10.1002/asia.201801679
Chemistry - An Asian Journal
COMMUNICATION
[5] a) M. Mellah, A. Voituriez, E. Schulz. Chem. Rev. 2007, 107, 5133-5209. b)
D. A. Evans, K. R. Campos, J. S. Tedrow, F. E. Michael, M. R. Gagné. J.
Am. Chem. Soc. 2000, 122, 7905-7920. c) S. Otocka, M. Kwiatkowska, L.
Madalińska, P. Kiełbasiński. Chem. Rev. 2017, 117, 4147-4181. d) B. F.
Makume, M. C. Maumela, C. W. Holzapfel, J. T. Dixon. Appl. Catal. A:
Gen. 2017, 542, 262-270.
Scheme 8. Possible Mechanism
[6] a) G. Zelcans, T. K. Hutton, R. Rios, N. Shibata, John Wiley & Sons, Ltd.
2013, pp. 1-14. b) C. M. Rayner. Contemp. Org. Synth. 1996, 3, 499-533.
c) M. Kazemi, L. Shiri, H. Kohzadi. Phosphorus Sulfur Silicon Relat. Elem.
2015, 190, 978-1003. d) F. Lovering, J. Bikker, C. Humblet. J. Med. Chem.
2009, 52, 6752-6756. e) Y. Yang, O. Engkvist, A. Llinàs, H. Chen. J. Med.
Chem. 2012, 55, 3667-3677. f) A. V. Bogolubsky, Y. S. Moroz, P. K.
Mykhailiuk, E. N. Ostapchuk, A. V. Rudnichenko, Y. V. Dmytriv, A. N.
Bondar, O. A. Zaporozhets, S. E. Pipko, R. A. Doroschuk, L. N.
Babichenko, A. I. Konovets, A. Tolmachev. ACS Comb. Sci. 2015, 17,
348-354.
[7] a) J.-Y. Lee, P. H. Lee. J. Org. Chem. 2008, 73, 7413-7416. b) S. L.
Benjamin, L. Karagiannidis, W. Levason, G. Reid, M. C. Rogers.
Organometallics 2011, 30, 895-904. c) M. Zaidlewicz, J. V. B. Kanth, H.
C. Brown. J. Org. Chem. 2000, 65, 6697-6702. d) I. Hatial, R. Mukherjee,
K. Senapati, A. Basak. Tetrahedron Lett. 2015, 56, 4275-4279. e) A.
Toma, C. I. Raţ, A. Silvestru, T. Rüffer, H. Lang, M. Mehring. J.
Organomet. Chem. 2016, 806, 5-11.
In summary, we reported a convenient metal-free dealkylative
approach to generate aryl alkyl or symmetrical dialkyl sulfides
from simple alkyl sulfides and alkyl halides. A variety of alkyl
sulfides bearing a various functional group(s) were synthesized
in good yields. This transalkylation proceed in an ionic
mechanism via sulfonium intermediates and it was suggested
that DMAC may participate in the second step to promoted the
reaction.
[8] a) Z. Qiao, X. Jiang. Org. Biomol. Chem. 2017, 15, 1942-1946. b) Y. Li, J.
Pu, X. Jiang. Org. Lett. 2014, 16, 2692-2695. c) Z. Qiao, J. Wei, X. Jiang.
Org. Lett. 2014, 16, 1212-1215. d) Z. Qiao, H. Liu, X. Xiao, Y. Fu, J. Wei,
Y. Li, X. Jiang. Org. Lett. 2013, 15, 2594-2597. e) A. Rostami, A. Rostami,
A. Ghaderi. J. Org. Chem. 2015, 80, 8694-8704.
Experimental Section
[9] a) H. Firouzabadi, N. Iranpoor, M. Gholinejad, A. Samadi. J. Mol. Catal. A:
Chem. 2013, 377, 190-196. b) H. Firouzabadi, N. Iranpoor, M.
Gholinejad. Adv. Synth. Catal. 2010, 352, 119-124.
[10] K. Marciniec , A. Maślankiewicz , M. J. Maślankiewicz. J. Heterocyclic
Chem. 2015, 52, 1019-1025.
[11] a) J. Fakhry, D. H. Grayson. Tetrahedron 2018, 74, 556-563. b) E.
Hartmann, S. E. Denmark. Helv. Chim. Acta 2017, 100, e1700158. c) S.
K. Patel, I. Paterson. Tetrahedron Lett. 1983, 24, 1315-1318.
To a 10 mL screw capped vial equipped with a magnetic stirring bar was
added sulfide (1) (0.3 mmol), halides (2) (1.2 mmol), and DMAC (1.0 mL)
under air atmosphere. The reaction mixture was placed in a preheated oil
bath at 160 °C and vigorously stirred for 12 h. Subsequently it was
cooled down to room temperature, filtered through a plug of celite and
then washed with saturated brine and extracted by ethyl acetate (3 × 5.0
mL). The solvents were removed under reduced pressure and the crude
reaction mixture was purified by chromatography on silica gel using
PE/EtOAc as eluent to obtain the desired product 3, 4 or 5.
[12] Y. Ni, H. Zuo, Y. Li, Y. Wu, F. Zhong. Org. Lett. 2018, 20, 4350-4353.
[13] a) R.-Y. Tang, Y.-X. Xie, Y.-L. Xie, J.-N. Xiang, J.-H. Li. Chem. Commun.
2011, 47, 12867-12869. b) H. Kurouchi, D. A. Singleton. Nat. Chem.
2018, 10, 237-241. c) Y.-m. Lin, G.-p. Lu, G.-x. Wang, W.-b. Yi. J. Org.
Chem. 2017, 82, 382-389. d) X. Huang, N. Rong, P. Li, G. Shen, Q. Li, N.
Xin, C. Cui, J. Cui, B. Yang, D. Li, C. Zhao, J. Dou, B. Wang. Org. Lett.
2018, 20, 3332-3336. e) W. Kong, C. Yu, H. An, Q. Song. Org. Lett. 2018,
20, 4975-4978. f) P.-F. Wang, X.-Q. Wang, J.-J. Dai, Y.-S. Feng, H.-J. Xu.
Org. Lett. 2014, 16, 4586-4589. g) M. S. Oderinde, M. Frenette, D. W.
Robbins, B. Aquila, J. W. Johannes. J. Am. Chem. Soc. 2016, 138, 1760-
1763. h) M. Jouffroy, C. B. Kelly, G. A. Molander. Org. Lett. 2016, 18, 876-
879.
[14] a) T. Kondo, T.-a. Mitsudo. Chem. Rev. 2000, 100, 3205-3220. b) I. P.
Beletskaya, V. P. Ananikov. Chem. Rev. 2011, 111, 1596-1636.
[15] a) K. D. Jones, D. J. Power, D. Bierer, K. M. Gericke, S. G. Stewart. Org.
Lett. 2018, 20, 208-211. b) C. Uyeda, Y. Tan, G. C. Fu, J. C. Peters. J.
Am. Chem. Soc. 2013, 135, 9548-9552. c) B. Liu, C.-H. Lim, G. M.
Miyake. J. Am. Chem. Soc. 2017, 139, 13616-13619. d) Y. Fang, T.
Rogge, L. Ackermann, S. Y. Wang, S. J. Ji. Nat. Commun. 2018, 9, 2240-
2249.
Acknowledgements
The authors thank the Natural Science Foundation of China (Nos.
21676076, 21725602, 21878071), Recruitment Program for Foreign
Experts of China (WQ20164300353) and Hu-Xiang High Talent of Hunan
Province (2016RS3023, 2018RS3042).
Keywords: Alkyl Sulfides • Alkyl Halides • Transalkylation •
Metal-free
[16] S. Nurhanna Riduan, J. Y. Ying, Y. Zhang. Org. Lett. 2012, 14, 1780-
1783.
[1] a) F. Aldeek, D. Canzani, M. Standland, M. R. Crosswhite, W. Hammack,
G. Gerard, J.-M. Cook. J. Agric. Food. Chem. 2016, 64, 6100-6107. b) G.
I. Birnbaum, S. R. Hall. J. Am. Chem. Soc. 1976, 98, 1926-1931. c) R.
Wang, M. R. Seyedsayamdost. Org. Lett. 2017, 19, 5138-5141. d) K. L.
Dunbar, D. H. Scharf, A. Litomska, C. Hertweck. Chem. Rev. 2017, 117,
5521-5577.
[2] a) K. Takimiya, I. Osaka, T. Mori, M. Nakano. Acc. Chem. Res. 2014, 47,
1493-1502. b) D. P. Nair, M. Podgórski, S. Chatani, T. Gong, W. Xi, C. R.
Fenoli, C. N. Bowman. Chem. Mater. 2014, 26, 724-744. c) A. Dondoni.
Angew. Chem. Int. Ed. 2008, 47, 8995-8997; Angew. Chem. 2008, 120,
9133-9135. d) J. Liu, J. Yang, Q. Yang, G. Wang, Y. Li. Adv. Funct. Mater.
2005, 15, 1297-1302.
[3] a) B. R. Smith, C. M. Eastman, J. T. Njardarson. J. Med. Chem. 2014, 57,
9764-9773. b) E. A. Ilardi, E. Vitaku, J. T. Njardarson. J. Med. Chem.
2014, 57, 2832-2842. c) M. Huang. J. Am. Chem. Soc. 1946, 68, 2487-
2488. d) S. W. Kaldor, V. J. Kalish, J. F. Davies, B. V. Shetty, J. E. Fritz, K.
Appelt, J. A. Burgess, K. M. Campanale, N. Y. Chirgadze, D. K. Clawson,
B. A. Dressman, S. D. Hatch, D. A. Khalil, M. B. Kosa, P. P. Lubbehusen,
M. A. Muesing, A. K. Patick, S. H. Reich, K. S. Su, J. H. Tatlock. J. Med.
Chem. 1997, 40, 3979-3985. e) S. Raghavan, V. Krishnaiah, B. Sridhar.
J. Org. Chem. 2010, 75, 498-501.
[17] J. Mao, T. Jia, G. Frensch, P. J. Walsh. Org. Lett. 2014, 16, 5304-5307.
[18] J. R. Schmink, S. A. B. Dockrey, T. Zhang, N. Chebet, A. van Venrooy, M.
Sexton, S. I. Lew, S. Chou, A. Okazaki. Org. Lett. 2016, 18, 6360-6363.
[19] (a) M. Saljoughian, H. Morimoto, H. Rapoport. J. Org. Chem. 1989, 54,
4689-4691. For the formation of sulfides by the reaction of allyl sulfides
with carbenes, see (b) I. Rothberg, E. R. Thornton. J. Am. Chem. Soc.
1964, 86, 3302-3306. For the reaction of sulfnium salts with HO anion in
aqueous solution to form sulfides, see (c) R. A. Moss, G. J. Ho, C.
Sierakowski. J. Am. Chem. Soc. 1992, 114, 3128-3129.
[20] a) C. Ramesh, G. Mahender, N. Ravindranath, B. Das. Green Chem.
2003, 5, 68-70. b) F. Rajabi. Tetrahedron Lett. 2009, 50, 7256-7258.
[21] a) Y. Li, L. Zhu, X. Cao, C.-T. Au, R. Qiu, S.-F. Yin. Adv. Synth. Catal.
2017, 359, 2864-2873. b) L. Zhu, R. Qiu, X. Cao, S. Xiao, X. Xu, C.-T. Au,
S.-F. Yin. Org. Lett. 2015, 17, 5528-5531.
[4] N. I. Joyce, C. C. Eady, P. Silcock, N. B. Perry, J. W. van Klink. J. Agric.
Food. Chem. 2013, 61, 1449-1456.
This article is protected by copyright. All rights reserved.