P. J. Coleman et al. / Bioorg. Med. Chem. Lett. 20 (2010) 2311–2315
2315
9. (a) Bunnelle, W. H.; Daanen, J. F.; Ryther, K. B.; Schrimpf, M. R.; Dart, M. J.;
Gelain, A.; Meyer, M. D.; Frost, J. M.; Anderson, D. J.; Buckley, M.; Curzon, P.;
Cao, Y.-J.; Puttfarcken, P.; Searle, X.; Ji, J.; Putman, C. B.; Surowy, C.; Toma, L.;
Barlocco, D. J. Med. Chem. 2007, 50, 3627; (b) Fray, A. H.; Augeri, D. J.; Kleinman,
E. F. J. Org. Chem. 1988, 53, 896.
conformation of diazepane 1. These findings further substantiate
our hypothesis that the interaction in the diazepane series
p–p
leads to a highly favorable binding conformation with the orexin
receptors. While compound 8c does not have improved pharmaco-
kinetics in rats and dogs, the bridged core provides reduced plasma
protein binding and enhanced brain penetration. Further investiga-
tion of the in vitro and in vivo properties of diazepane-based scaf-
folds as orexin receptor antagonists will be reported in due course.
10. Racemic 8a was resolved by chiral HPLC on a ChiralPak AD column (2 Â 25 cm)
eluting with 40% hexanes/60% EtOAc. The first eluting isomer (8b) has a
retention time = 14.3 min and the second eluting enantiomer (8c) has
retention time = 17.9 min.
a
11. For detailed descriptions of these assays see: Supplementary data in Ref. 4.
12. Compound 16, C23H19Cl
a = 10.1978(7), b = 10.4373(6), c = 19.6892(11) Å, V = 2095.7(2) Å3, Z = 4,
Dx = 1.470 gcmÀ3, monochromatized radiation k(Cu) = 1.5418 Å, = 1.97 mmÀ1
F(0 0 0) = 960, T = 100 K. Data were collected on Oxford Diffraction CCD
diffractometer to a h limit of 66.4838° which yielded 6974 reflections. There are
2548 unique reflections with 2287 observed at the 2 level. The structure was
F N7O, Mr = 463.900, orthorhombic, P212121,
References and notes
l
,
a
1. For reviews: (a) Boss, C.; Brisbare-Roch, C.; Jenck, F. J. Med. Chem. 2009, 52, 891;
(b) Boss, C.; Brisbare-Roch, C.; Jenck, F.; Aissaoui, H.; Koberstein, R.; Sifferlen, T.;
Weller, T. Chimia 2008, 62, 974; (c) Roecker, A. J.; Coleman, P. J. Curr. Top. Med.
Chem. 2008, 8, 977.
2. (a) De Lecea, L.; Kilduff, T. S.; Peyron, C.; Gao, X.-B.; Foye, P. E.; Danielson, P. E.;
Fukuhara, C.; Battenberg, E. L. F.; Gautvik, V. T.; Bartlett, F. S., II; Frankel, W. N.;
Van Den Pol, A. N.; Bloom, F. E.; Gautvik, K. M.; Sutcliffe, J. G. Proc. Natl. Acad. Sci.
U.S.A. 1998, 95, 322; (b) Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.;
Chemelli, R.; Tanaka, H.; Williams, S. C.; Richardson, J. A.; Kozlowski, G. P.;
Wilson, S.; Arch, J. R. S.; Buckingham, R. E.; Haynes, A. C.; Carr, S. A.; Annan, R.
S.; McNulty, D. E.; Liu, W.; Terrett, J. A.; Elshourbagy, N. A.; Bergsma, D. J.;
Yanagisawa, M. Cell 1998, 92, 573.
3. Brisbare-Roch, C.; Dingemanse, J.; Koberstein, R.; Hoever, P.; Aissaoui, H.;
Flores, S.; Mueller, C.; Nayler, O.; van Gerven, J.; de Haas, S. L.; Hess, P.; Qiu, C.;
Buchmann, S.; Scherz, M.; Weller, T.; Fischli, W.; Clozel, M.; Jenck, F. Nat. Med.
2007, 13, 150.
4. Whitman, D. B.; Cox, C. D.; Breslin, M. J.; Brashear, K. M.; Schreier, J. D.;
Bogusky, M. J.; Bednar, R. A.; Lemaire, W.; Bruno, J. G.; Hartman, G. D.; Reiss, D.
R.; Harrell, C. M.; Kraus, R. L.; Li, Y.; Garson, S. L.; Doran, S. M.; Prueksaritanont,
T.; Li, C.; Winrow, C. J.; Koblan, K. S.; Renger, J. J.; Coleman, P. J. ChemMedChem
2009, 4, 1069.
r
solved by direct methods (SHELXS-97, Sheldrick, G.M. Acta Crystallogr., 1990, A46,
467–473) and refined using full-matrix least-squares on F2 (SHELXL-97, Sheldrick,
G.M. SHELXL-97. Program for the Refinement of Crystal Structures. Univ. of Göttingen,
Germany). The finalmodelwas refinedusing298 parametersand all2548data. All
non-hydrogen atoms were refined with anisotropic thermal displacements. The
final agreement statistics are: R = 0.068 (based on 2287 reflections with I > 2
r(I)),
wR = 0.177, S = 1.10 with (D/r)max = 0.01. The maximum peak height in a final
difference Fourier map is 0.774 eÅÀ3 and this peak is without chemical
significance. CCDC 758078 contains the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The Cambridge
13. Seven to ten week old Sprague–Dawley rats were anesthetized with isoflurane
(5% with oxygen at 2 L/min). Once anesthetized, the rat was shaved from the
ears to the shoulders and then placed on a circulating water warming blanket
set at 37 °C. Anesthesia was maintained using 2% isoflurane by means of a nose
cone. The tail vein was cannulated with
a 25 G winged infusion needle
connected via tubing to a syringe containing the test compound. The syringe
was placed on a Harvard Apparatus infusion pump set to deliver 2 mg/kg over
30 min. At the end of the infusion, CSF was collected from the cisterna magna
by needle puncture with slow aspiration using a 25 G butterfly connected by
5. Cox, C. D.; McGaughey, G. B.; Bogusky, M. J.; Whitman, D. B.; Ball, R. G.;
Winrow, C. J.; Renger, J. J.; Coleman, P. J. Bioorg. Med. Chem. Lett. 2009, 19, 2997.
6. Reduction in numbers of rotatable bonds has been associated with improved
oral bioavailability. See: Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.;
Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 2615.
tubing to a 1 cc syringe. The CSF sample was dispensed into
a vial and
immediately frozen on dry ice. A 1 ml blood sample was then obtained via
cardiac puncture, centrifuged, plasma collected and frozen on dry ice. The brain
was rapidly harvested and frozen on dry ice. CSF, plasma, and brain samples
were then analyzed to determine compound levels.
7. Conformational searching using the mixed torsion/low-mode sampling
algorithm as implemented in Schrödinger, v9.0 (Schrödinger, LLC, v9.0) was
14. Martin, I. Drug Discovery Today 2004, 9, 161.
15. The MDR1 B–A/A–B ratio for 8c = 0.9 with an apparent permeability of
37 Â 10À6 cm/s in LLC-PK1 cells. For a description of this method see (a)
Hochman, J. H.; Yamazaki, M.; Ohe, T.; Lin, J. H. Curr. Drug Metab. 2002, 3, 257;
(b) Lin, J. H.; Yamazaki, M. Drug Metab. Rev. 2003, 35, 417.
performed using the OPLS force field in
a constant dielectric of 1. All
conformers within 5 kcal/mol of the global minimum were saved and
visually inspected for evidence of pi-stacking. See: Kolossváry, I.; Guida, W.
C. J. Am. Chem. Soc. 1996, 118, 5011.
8. The 6-fluoroquinazoline imparted additional binding affinity for OX2R (e.g.
Table 1; compound 1 vs 1a). For preparation of 6-fluoro-2-chloroquinazoline
see: Eur. Pat. Appl. 248554 A2, 1987.