10.1002/chem.201905183
Chemistry - A European Journal
FULL PAPER
2. Z. Li, D. Wang, L. Li, S. Pan, Z. Na, C. Y. J. Tan, S. Q. Yao,
J. Am. Chem. Soc. 2014, 136, 9990-9998.
3. B. Yuan, Y. Sun, Q. Guo, J. Huang, X. Yang, Y. Y. Chen, X.
H. Wen, Xi. Meng, J. Liu, K. Wang, Anal. Chem. 2017, 89,
9347-9353.
4. H. X. Wu, J. Yang, J. Seckute, N. K. Devaraj, Angew. Chem.
Int. Ed. 2014, 53, 5805-5809.
5. P. Agarwal, B. J. Beahm, P. Shieh, C. R. Bertozzi, Angew.
Chem. Int. Ed. 2015, 54, 11504-11510.
6. Y. C. Chen, C. M. Clouthier, K. Tsao, M. Strmiskova, H.
Lachance, J. W. Keillor, Angew. Chem. Int. Ed. 2014, 53,
13785-13788.
7. Q. Li, T. Dong, X. H. Liu, X. Lei, J. Am. Chem. Soc. 2013,
135, 4996−4999.
could be employed as a powerful and robust tool for two-photon
in vivo imaging of tumors.40
To further explore advantages of our biorthogonal light-up
probes, a conventional probe RB, in which biotin is connected
directly with the rhodoamine B, was synthesized and employed
for in vivo imaging. As shown in Fig. 6, in vivo fluorescence
imaging of subcutaneous tumor demonstrated that conventional
probe RB displayed stronger background with poor resolution (Fig.
6A), while the biorthogonal light-up probe (DAAS-1) not only
showed high resolution but also increase signal-to-noise ratio
from 7 to 18 significantly (Fig. 6B). These results together strongly
proved that our biorthogonal probes is more advantageous than
the conventional probes.
8. L. Xu, R. C. Cooper, J. Wang, W. A. Yeudall, H. Yang. ACS
Biomater. Sci. Eng. 2017, 3, 1641−1653.
9. Devaraj N. K. ACS Cent. Sci. 2018, 4, 952−959.
10. A. E. Speers, G. C. Adam, B. F. Cravatt, J. Am. Chem. Soc.
2003, 125, 4686-4687.
Conclusions
11. L. I. Willems, H. S. Overkleeft, S. I. Kasteren, Bioconjugate
Chem., 2014, 25, 1181-1191
12. S. Zhuang, Q. Li, L. Cai, C. Wang, X. Lei, ACS Cent. Sci.
2017, 3, 501-509.
13. M. Li, X. Zhou, S. Guo, N. Wu, Biosens. Bioelectron. 2013,
43, 69-74.
14. X. L. Zhang, C. Zheng, S. S. Guo, J. Li, H. H. Yang, G. Chen,
Anal. Chem. 2014, 86, 3426-3434.
15. S. Reymond, J. Cossy, Chem. Rev. 2008, 108, 5359–5406.
16. X. X. Jiang, R. Wang, Chem. Rev. 2013, 113, 5515−5546.
17. X. Shang, X. Song, C. Faller, R. Lai, H. Li, R. Cerny, W. Niu,
J. Guo, Chem. Sci., 2017, 8, 1141-1145.
18. J. J. Shie, Y. C. Liu, Y. M. Lee, C. Lim, J. M. Fang, C. H.
Wong, Chem. Commun. 2017, 53, 1490-1493.
19. P. Shieh, V. T. Dien, B. J. Beahm, J. M. Castellano, T. W.
Coray, C. R. Bertozzi, Chem. Sci. 2015, 137, 7145−7151.
20. Y. J. Lee, W. Cho, J. Sung, E. Kim, S. B. Park, J. Am. Chem.
Soc. 2018, 140, 974-983.
21. F. B. Yu, P. Li, P. Song, B. S. Wang, J. Z. Zhao, K. Han,
Chem. Commun. 2012, 48, 2852-2854.
22. Q. Y. Xu, L. W. He, H. P. Wei, W. Y. Lin, J. Fluoresc. 2018,
28, 5-11.
23. R. J. Mellanby, J. I. Scott, I. Mair, A. Fernandez, L. Saul, J.
Arlt, M. Moral, M. Vendrell, Chem. Sci. 2018, 9, 7261-7270.
24. Y. Dou, Z. Xie, Z. Sun, H. Fang, C. Shen, P. Zhang, Q. Zhu,
ChemCatChem, 2016, 8, 3570-3574.
A novel class of light-up bioorthogonal probes with color
tunable from blue to orange was successfully developed.
Generally, azido derivatives of AQ can produce large
fluorescence after cycloaddition reaction. Remarkably, the
replacement of amine with four-membered azetidine ring in AQ
scaffold leads to significant fluorescence enhancement up to
1352-fold by effectively suppressing ICT effect. Interestingly, the
substitution of styryl group at C-2 position exhibits long emission
wavelength (up to 610 nm) and large two-photon absorption cross
section (δ up to 542 GM). Subsequent bioimaging experiments
demonstrate that these probes are versatile, which have been
successfully used for live cell imaging without washing steps, and
in-vivo two-photon imaging of live zebrafish and mice.
Remarkably, these light-up biorthogonal probes with two-photon
property displayed better resolution and higher signal to noise
ratio for in vivo tumor imaging than conventional fluorophores
without light-up property. It is also noteworthy that, the design
strategy reported in this study represents a unique approach to
realize a diversity of high-performance light-up biorthogonal
probes for bioimaging. We envison that the bioorthognal probes
developed in this study will provide useful tools for cancer
diagnosis or fluorescence-guided therapy.
25. Y. Dou, X. Gu, S. Ying, S. Zhu, S. A. Yu, W. Shen, Q. Zhu,
Org. Biomol. Chem. 2018, 16, 712–716.
26. K. M. Zhang, W. Dou, X. L. Tang, L. Z. Yang, Z. H. Ju, Y. M.
Cui, W. S. Liu, Tetrahedron Lett. 2015, 56, 2707–2709.
27. Z. Gao, X. Zhang, M. Zhang, Y. Chen, Dyes Pig. 2013, 99,
531-536.
Experimental Section
Experimental Details see Supporting information
28. Z. Y. Hao, S. L. Hong, X. Chen, P. R. Chen, Acc. Chem. Res.
2011, 44, 742-751.
29. K. Lang, J. W. Chin, ACS Chem. Biol. 2014, 9, 16-20.
30. A. Kumar, M. D. Sevilla, J. Phys. Chem. A. 2019, 123, 3098-
3108.
Acknowledgements
The authors are grateful to the National Natural Science
Foundation of China (Nos. 21472172, 21272212, 51603186 &
21572190), Natural Science Foundation of Zhejiang Province (No.
LY17B060009) and the City University of Hong Kong Grant (No.
9667147), the National University of Singapore (R279-000-482-
133) and Singapore NRF (R279-000-444-281).
31. a) J. S. Seixas, R. S. Becker, A. L. Macanita, J. Phys. Chem.
1994, 98, 6054-6058; b) Zhou Z., Fahrni C. J., J. Am. Chem.
Soc. 2004, 126, 8862-8863; c) J. A. Gonzalez-Vera, E.
Lukovic, B. Imperiali, J. Org. Chem. 2009, 74, 7309–7314, d)
M. Ghedini, M. L. Deda, L. Aiello, A. Grisolia, Inorg. Chim.
Acta, 2004, 357, 33–40.
32. F. Helmchen, W. Denk, Nat Methods. 2005, 2, 932-940.
33. Y. H. Li, Y. Sun, J. C. Li, Q. Q. Su, W. Yuan, Y. Dai, C. M.
Han, Q. H. Wang, W. Feng, F. Y. Li, J. Am. Chem. Soc. 2015,
137, 6407−6416.
Keywords: Bioorthogonal reaction• fluorescence light-up • two-
photon • 8-aminoquinoline • in vivo imaging
34. D. Jung, S. Maiti, J. H. Lee, J. H. Lee, J. S. Kim, Chem.
Commun. 2014, 50, 3044-3048.
35. X. Q. Kong, B. L. Dong, N. Zhang, C. Wang, X. Z. Song, W.
Y. Lin, Talanta, 2017, 174, 357–364.
1. T. Yogo, K. Umezawa, M. Kamiya, R. Hino, Y. Urano,
Bioconjugate Chem. 2017, 28, 2069-2076.
36. H. M. Kim, B. R. Cho, Chem. Rev. 2015, 115, 5014−5055.
This article is protected by copyright. All rights reserved.