2884
F. Pisaneschi et al.
LETTER
8629. (d) Kotha, S. Acc. Chem. Res. 2003, 36, 342.
(e) Ohfune, Y.; Shinada, T. Eur. J. Org. Chem. 2005, 5127.
(f) Toniolo, C.; Formaggio, F.; Kaptein, B.; Broxterman, Q.
B. Synlett 2006, 1295. (g) Vogt, H.; Bräse, S. Org. Biomol.
Chem. 2007, 5, 406.
The crude product was purified by chromatography on silica
gel (eluent: PE–Et2O, 1:1) to give pure 7 (154 mg, 73%;
mixture of two rotamers at r.t.) as a colourless oil. TBAF (1
M, 0.62 mmol, 0.6 mL) was added dropwise to a solution of
proline 7 (0.41 mmol, 154 mg) in THF (10 mL). The mixture
was stirred at r.t. for 2 h, and then the solvent was removed
at reduced pressure. The residue was dissolved in CH2Cl2
and H2O and the two layers were separated. The aqueous
layer was extracted with CH2Cl2 and the combined organic
layers were dried over Na2SO4, filtered, and concentrated
under reduced pressure. The crude product was purified by
chromatography on silica gel (eluent: PE–Et2O, 1:1) to give
pure 4 (67 mg, 55%; mixture of two rotamers at r.t.) as a
colourless oil. Compound 4: Rf 0.37. 1H NMR (400 MHz,
DMSO-d6, 110 °C): d = 7.28–7.40 (m, 5 H, Ph), 5.09 (br s, 2
H, CH2Ph), 3.66 (ddd, J = 5.3, 7.8, 10.2 Hz, 1 H, 5-Ha), 3.59
(br s, 3 H, OMe), 3.51 (dt, J = 7.3, 10.2 Hz, 1 H, 5-Hb), 3.05–
3.17 (m, 1 H, CHHC≡), 2.81 (dd, J = 2.6, 17.0 Hz, 1 H,
CHHC≡), 2.64 (t, J = 2.6 Hz, 1 H, ≡CH), 2.32 (m, 1 H, 3-Ha),
2.15 (m, 1 H, 3-Hb), 1.97–2.07 (m, 1 H, 4-Ha), 1.89–1.96 (m,
1 H, 4-Hb). Anal. Calcd for C17H19NO4: C, 67.76; H, 6.36; N,
4.65. Found: C, 67.57; H, 6.63; N, 4.93.
(3) Lubec, G.; Labudova, O.; Seebach, D.; Beck, A.; Hoeger,
H.; Hermon, M.; Weninger, M. Life Sci. 1995, 57, 2245.
(4) Becker, D. P.; DeCrescenzo, G.; Freskos, J.; Getman, D. P.;
Hockerman, S. L.; Li, M.; Mehta, P.; Munie, G. E.;
Swearingen, C. Bioorg. Med. Chem. Lett. 2001, 11, 2723.
(5) Burton, G.; Ku, T. W.; Carr, T. J.; Kiesow, T.; Sarisky, R. T.;
Lin-Goerke, J.; Baker, A.; Earnshaw, D. L.; Hofmann, G. A.;
Keenan, R. M.; Dhanak, D. Bioorg. Med. Chem. Lett. 2005,
15, 1553.
(6) (a) Shin-ya, K.; Kim, J.-S.; Furihata, K.; Hayakawa, Y.;
Seto, H. Tetrahedron Lett. 1997, 38, 7079. (b) Watanabe,
H.; Okue, M.; Kobayashi, H.; Kitahara, T. Tetrahedron Lett.
2002, 43, 861.
(7) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int.
Ed. 2001, 40, 2004.
(8) (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org.
Chem. 2002, 67, 3057. (b) Rostovtsev, V. V.; Green, L. G.;
Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002,
41, 2596.
(17) (a) Alvarez, S. G.; Alvarez, M. T. Synthesis 1997, 413.
(b) Ju, Y.; Kumar, D.; Varma, R. S. J. Org. Chem. 2006, 71,
6697. (c) Hu, X.; Nguyen, K. T.; Jiang, V. C.; Lofland, D.;
Moser, H. E.; Pei, D. J. Med. Chem. 2004, 47, 4941.
(18) (a) Szarek, W. A.; Achmatowicz, O. Jr.; Plenkiewicz, J.;
Radatus, B. K. Tetrahedron 1978, 34, 1427. (b) Esteves, A.
P.; Rodrigues, L. M.; Silva, M. E.; Gupta, S.; Oliveira-
Campoça, A. M. F.; Machalickyb, O.; Mendonça, A. J.
Tetrahedron 2005, 62, 8625.
(19) General Procedure: To a mixture of proline 4 (1 equiv) and
azide 8 (1.2 equiv) in a mixture of H2O and t-BuOH (1:1) in
a microwave reaction tube were added copper turnings (0.2
equiv) and copper sulfate (0.7 equiv). The mixture was
stirred for 15–20 min at 125 °C, using an irradiation power
of 100 W with simultaneous cooling. It was then diluted with
H2O and CH2Cl2 and the two layers were separated. The
aqueous layer was extracted with CH2Cl2 and the combined
organic layers were dried over Na2SO4, filtered, and
concentrated under reduced pressure. The crude product was
purified by chromatography on silica gel to afford
(9) For a recent review, see: Bock, V. D.; Hiemstra, H.; van
Maarseveen, J. H. Eur. J. Org. Chem. 2006, 51.
(10) (a) Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Van der
Eychen, E. Org. Lett. 2004, 6, 4223. (b) Khanetskyy, B.;
Dallinger, D.; Kappe, C. O. J. Comb. Chem. 2004, 6, 884.
(11) For the synthesis of other proline-derived triazoles by azide–
alkyne cycloadditions, see: (a) Yan, Z.-Y.; Niu, Y.-N.; Wei,
H.-L.; Wu, L.-Y.; Zhao, Y.-B.; Liang, Y.-M. Tetrahedron:
Asymmetry 2006, 17, 3288. (b) Paul, A.; Bittermann, H.;
Gmeiner, P. Tetrahedron 2006, 62, 8919.
(12) During our study, the preparation of racemic a-trifluoro-
methyl azahistidine analogues using the same approach has
been reported: Shchetnikov, G. T.; Peredukov, A. S.;
Osipov, S. N. Synlett 2007, 136.
(13) (a) Seebach, D.; Boes, M.; Naef, R.; Schweizer, W. B. J. Am.
Chem. Soc. 1983, 105, 5390. (b) Seebach, D.; Sting, A. R.;
Hoffmann, M. Angew. Chem. Int. Ed. 1996, 35, 2708.
(14) (a) Połoński, T. Tetrahedron 1985, 41, 603. (b) Orsini, F.;
Pellizzoni, F.; Forte, M.; Sisti, M.; Bombieri, G.; Benetollo,
F. J. Heterocycl. Chem. 1989, 26, 837. (c) Wang, H.;
Germanas, P. Synlett 1999, 33. (d) Amedjkouh, M.;
Ahlberg, P. Tetrahedron: Asymmetry 2002, 13, 2229.
(15) A related compound of 5 (NBoc instead of NCbz) has been
previously prepared in racemic form by propargylation of
Boc-Pro-OMe: Ikeda, M.; Kugo, Y.; Kondo, Y.; Yamazaki,
T.; Sato, T. J. Chem. Soc., Perkin Trans. 1 1997, 3339.
(16) 1-Benzyl 2-Methyl (2R)-2-Prop-2-ynylpyrrolidine-1,2-
dicarboxylate (4): To a solution of compound 5 (0.56 mmol,
197 mg) in MeOH (3 mL) in a microwave reaction tube was
added TMSCl (2.89 mmol, 365 mL). The mixture was stirred
for 2.5 h at 40 °C using an irradiation power of 150 W with
simultaneous cooling of the reaction vessel with a stream of
compressed air. The solvent was removed under reduced
pressure, and a sat. solution of NaHCO3 (3 mL) was added
followed by carbobenzyloxy chloride (CbzCl, 0.62 mmol,
87 mL) at 0 °C. The reaction mixture was allowed to warm to
r.t., stirred overnight at r.t., and diluted with EtOAc. The two
layers were separated, the aqueous layer was extracted with
EtOAc and the combined organic layers were dried over
Na2SO4, filtered, and concentrated under reduced pressure.
analytically pure proline 9.
(20) 1-Benzyl 2-Methyl (2R)-2-{[1-(4-Ethoxy-4-oxobutyl)-1H-
1,2,3-triazol-4-yl]methyl}pyrrolidine-1,2-dicarboxylate
(9c): Rf 0.28 (PE–Et2O, 1:1). 1H NMR (400 MHz, DMSO-d6,
110 °C): d = 7.52 (s, 1 H, triazole), 7.29–7.41 (m, 5 H, Ph),
5.12 (s, 2 H, CH2Ph), 4.34 (t, J = 6.9 Hz, 2 H,
NCH2CH2CH2CO2Et), 4.08 (q, J = 7.1 Hz, 2 H, CH2CH3),
3.63 (br s, 3 H, OMe), 3.46–3.58 [m, 2 H, C(2)CHH + 5-Ha],
3.23 [d, J = 14.6 Hz, 1 H, C(2)CHH], 3.02–3.10 (m, 1 H, 5-
Hb), 2.24–2.32 (m, 1 H, 3-Ha), 2.27 (t, J = 7.3 Hz, 2 H,
CH2CO2Et), 2.02–2.10 (m, 3 H, 3-Hb + CH2CH2CO2Et),
1.67–1.79 (m, 1 H, 4-Ha), 1.29–1.41 (m, 1 H, 4-Hb), 1.20 (t,
J = 7.1 Hz, 3 H, CH2CH3). Anal. Calcd for C23H30N4O6: C,
60.25; H, 6.59; N, 12.22. Found: C, 59.98; H, 6.90; N, 11.98.
(21) For previous examples of triazole-linked glycosyl amino
acids and peptides, see: (a) Kuijpers, B. H. M.; Groothuys,
S.; Keereweer, A. (B.) R.; Quaedflieg, P. J. L. M.; Blaauw,
R. H.; van Delft, F. L.; Rutjes, F. P. J. T. Org. Lett. 2004, 6,
3123. (b) Lin, H.; Walsh, C. T. J. Am. Chem. Soc. 2004, 126,
13998.
(22) Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003,
8, 1128.
Synlett 2007, No. 18, 2882–2884 © Thieme Stuttgart · New York