Paper
RSC Advances
2017, 53, 13256; (j) S. Y. Chow and L. R. Odell, J. Org.
Chem., 2017, 82, 2515; (k) J. Chen, W. Long, Y. Yang and
X. Wan, Org. Lett., 2018, 20, 2663; (l) Y. Weiguang,
H. Dayun, Z. Xiaobao, L. Dongping, W. Xinyan and
H. Yuefei, Chem. Commun., 2018, 54, 8222; (m) J. Gui,
H. Xie, H. Jiang and W. Zeng, Org. Lett., 2019, 21, 2804; (n)
R. Ding, H. Chen, Y. Xu, H.-T. Tang, Y. Chen and Y. Pan,
Adv. Synth. Catal., 2019, 361, 3656; (o) X. Zheng and
J. P. Wan, Adv. Synth. Catal., 2019, 361, 5690; (p) F. Yi,
Q. Sun, J. Sun, C. Fu and W. Yi, J. Org. Chem., 2019, 84,
6780; (q) B. Kaboudin, S. Torabi, F. Kazemi and
H. Aoyama, RSC Adv., 2020, 10, 26701; (r) W. Xia,
B. Huang, C. Yang and J. zhou, Chem. Commun., 2020, 56,
5010; (s) Q. Gou, Z. Liu, T. Cao, X. Tan, W. Shi, M. Ran and
J. Qin, J. Org. Chem., 2020, 85, 2092; (t) G.-D. Wang,
Y.-H. Guo and J.-P. Wan, Chin. J. Org. Chem., 2020, 40,
645; (u) X.-X. Zheng, Y.-Y. Liu and J.-P. Wan, Chin. J. Org.
Chem., 2020, 40, 1891 and references cited therein.
Conclusions
In summary, a straightforward, one-pot, multicomponent
method was developed for the synthesis of di- and tri-
substituted N-sulfonyl formamidines using readily accessible
substrates under very mild conditions free of catalysts or other
additives. This protocol is inexpensive to carry out and step-
economic, so it provides a potential route for the construction
of diverse N-sulfonyl formamidines in moderate to high yields.
Conflicts of interest
There are no conicts to declare.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (No. 21762044), and Innovation Training
Project of Xinjiang Undergraduate Education (No:
S202010762017).
¨
7 (a) A. Domling, Chem. Rev., 2006, 106, 17; (b) I. Akritopoulou-
Zanze, Curr. Opin. Chem. Biol., 2008, 12, 324.
´
8 B. B. Toure and D. G. Hall, Chem. Rev., 2009, 109, 4439.
9 Selective literatures for the Synthesis of sulfonyl amidines by
Cu-catalyzed MCRs. (a) I. Bae, H. Han and S. Chang, J. Am.
Chem. Soc., 2005, 127, 2038; (b) S. Mandal, H. M. Gauniyal,
K. Pramanik and B. Mukhopadhyay, J. Org. Chem., 2007,
72, 9753; (c) J. Kim, S. Y. Lee, J. Lee, Y. Do and S. Chang, J.
Org. Chem., 2008, 73, 9454; (d) I. Yavari, S. Ahmadian,
M. Ghazanfarpur-Darjani and Y. Solgi, Tetrahedron Lett.,
2011, 52, 668; (e) J. Y. Kim, S. H. Kim and S. Chang,
Tetrahedron Lett., 2008, 49, 1745; (f) J. Wang, P. Lu and
Y. Wang, Org. Chem. Front., 2015, 2, 1346; (g) T. D. Suja,
K. V. L. Divya, L. V. Naik, A. R. Kumar and A. Kamal,
Bioorg. Med. Chem. Lett., 2016, 26, 2072; (h) X. He,
Y. Shang, J. Hu, K. Ju, W. Jiang and S. Wang, Sci. China
Chem., 2012, 55, 214; (i) M. Xu, C. Kuang, Z. Wang and
Q. Yang, Synlett, 2010, 17, 2664.
Notes and references
1 S. Patai, The Chemistry of Amidines and Imidiares, Wiley, New
York, 1975.
2 T. Kumamoto and I. Ishikawa, Superbases for Organic
Synthesis: Guanidines, Amidines, Phosphazenes and Related
Organoctalysts, John Wiley & Sons Press, West Sussex, 2009,
p. 295.
3 (a) G. Brasche and S. L. Buchwald, Angew. Chem., Int. Ed.,
2008, 47, 1932; (b) Y.-F. Wang, X. Zhu and S. Chiba, J. Am.
Chem. Soc., 2012, 134, 3679; (c) M. A. McGowan,
C. Z. McAvoy and S. L. Buchwald, Org. Lett., 2012, 14, 3800.
4 (a) J. Barker and M. Kilner, Coord. Chem. Rev., 1994, 133, 219;
(b) A. Wusiman, X. Tusun and C. D. Lu, Eur. J. Org. Chem.,
2012, 16, 3088.
5 (a) M. Y. Lee, M. H. Kim, J. Kim, S. H. Kim, B. T. Kim, 10 J. Kim, S. S. Stahl, J. Kim and S. S. Stahl, J. Org. Chem., 2015,
I. H. Jeong, S. Chang, S. H. Kim and S.-Y. Chang, Bioorg. 80, 2448.
Med. Chem. Lett., 2010, 20, 541; (b) A. Goubet, A. Chardon, 11 W. Z. Bi, W. J. Zhang, Z. J. Li, X. Y. Xia, X. L. Chen, L. B. Qu
P. Kumar, P. K. Sharma and R. N. Veedu, Bioorg. Med.
Chem. Lett., 2013, 23, 761.
6 Selective literatures for the synthesis of sulfonyl amidines.
and Y. F. Zhao, Eur. J. Org. Chem., 2019, 35, 6071.
12 B. Liu, Y. Ning, M. Virelli, G. Zanoni, E. A. Anderson and
X. Bi, J. Am. Chem. Soc., 2019, 141, 1593.
(a) X. L. Xu, Z. C. Ge, D. P. Cheng, L. Ma, C. S. Lu, 13 D. Mishra, A. J. Borah, P. Phukan, D. Hazarika and
Q. F. Zhang, N. Yao and X. N. Li, Org. Lett., 2010, 12, 897;
P. Phukan, Chem. Commun., 2020, 56, 8408.
(b) L. Zhang, J. H. Su, S. J. Wang, C. F. Wan, Z. G. Zha, 14 (a) S. Shojaei, Z. Ghasemi and A. Shahrisa, Tetrahedron Lett.,
J. F. Z. Du and Y. Wang, Chem. Commun., 2011, 47, 5488;
(c) M. Aswad, J. Chiba, T. Tomohiro and Y. Hatanaka,
Chem. Commun., 2013, 49, 10242; (d) S. Chen, Y. Xu and
X. Wan, Org. Lett., 2011, 13, 6152; (e) N. Chandna,
N. Chandak, P. Kumar, J. K. Kapoorb and P. K. Sharma,
Green Chem., 2013, 15, 2294; (f) K. Hajibabaei and H. Zali-
Boeini, Synlett, 2014, 25, 2044; (g) J. Chen, Y. P. Guo,
M. H. Sun, G. T. Fan and L. Zhou, Chem. Commun., 2014,
50, 12367; (h) L. Dianova, V. Berseneva, T. Beryozkina,
I. Emov, M. Kosterina, O. Eltsov, W. Dehaen and
V. Bakulev, Eur. J. Org. Chem., 2015, 31, 6917; (i) J. Chen,
W. Long, S. Fang, Y. Yang and X. Wan, Chem. Commun.,
2017, 58, 3957; (b) M. Jagadale, P. Bhange, R. Salunkhe,
D. Bhange, M. Rajmane and G. Rashinkar, Appl. Catal., A,
2006, 511, 95; (c) M. J. Kim, B. R. Kim, C. Y. Lee and
J. Kim, Tetrahedron Lett., 2016, 57, 4070; (d) T. Yang,
H. Cui, C. Zhang, L. Zhang and C. Y. Su, Inorg. Chem.,
2013, 52, 9053; (e) Y. Huang, W. Yi, Q. Sun and F. Yi, Adv.
Synth. Catal., 2018, 360, 3074; (f) J. Wang, J. Liu, H. Ding,
J. Wang, P. Lu and Y. Wang, J. Org. Chem., 2015, 80, 5842;
(g) J. Chen, W. Long, Y. Zhao, H. Li, Y. Zheng, P. Lian and
X. Wan, Chinese J. Chem., 2018, 36, 857; (h) B. Yao,
C. Shen, Z. Liang and Y. Zhang, J. Org. Chem., 2014, 79,
936; (i) Y. Zhang and Z. Chen, Tetrahedron Lett., 2018, 59,
© 2021 The Author(s). Published by the Royal Society of Chemistry
RSC Adv., 2021, 11, 15161–15166 | 15165