Published on Web 11/30/2007
A Two-Directional Approach to a (-)-Dictyostatin C11-C23
Segment: Development of a Highly Diastereoselective,
Kinetically-Controlled Meerwein-Ponndorf-Verley Reduction
Andrew K. Dilger, Vijay Gopalsamuthiram, and Steven D. Burke*
Contribution from the Department of Chemistry, UniVersity of Wisconsin-Madison, 1101
UniVersity AVenue, Madison, Wisconsin 53706-1322
Received September 25, 2007; E-mail: burke@chem.wisc.edu
Abstract: A three-step synthesis of a precursor to the C11-C23 segment of (-)-dictyostatin is described.
The sequence features a sonication-assisted, enantioselective double hetero Diels-Alder (HDA) reaction
catalyzed by Jacobsen’s Cr(III) Schiff base catalyst, followed by a novel, highly diastereoselective Meerwein-
Ponndorf-Verley (MPV) reduction of the hydropyranone subunits under kinetic control to yield the bis-
(axial alcohol) 4. Generalized studies of both the HDA and MPV methodologies are also described.
Introduction
In the course of initiating a synthetic approach to the potent
anticancer agent (-)-dictyostatin,1 we found existing methodol-
ogy to be inadequate for two of the first three steps. Develop-
ment of an operational improvement in Jacobsen’s powerful
catalytic asymmetric hetero Diels-Alder method2 and discovery
of
a kinetic Meerwein-Ponndorf-Verley protocol for
selective reduction of hydropyran-4-ones to axial alcohols were
required. Illustration of the strategic incentive provided by the
dictyostatin C11-C23 segment and generalization of the
methodological developments beyond that context are detailed
herein.
(-)-Dictyostatin (1, Figure 1) was first isolated in 1994 by
Pettit and co-workers1 from a marine sponge Spongia sp. off
the coast of Maldives and later by Wright and co-workers3 from
Corralistidae sponges. It was subsequently found to act as an
efficient inhibitor of human cancer cell growth with GI50 values
ranging from 50 pM to 1 nM. In addition, it retains activity
against some taxol-resistant cell lines by stabilizing microtu-
bules. This mode of action is analogous to that of the potential
chemotherapeutic agent discodermolide, which is structurally
similar.4
Dictyostatin comprises a 22-membered macrolactone with 11
stereogenic centers, 10 of which are in common with disco-
dermolide. In addition, dictyostatin displays an endocyclic
2Z,4E-dienoate (C1-C5) and a Z-1,3-diene at C23. These
interesting structural features coupled with its attractive biologi-
cal profile have led to five total syntheses of dictyostatin5 as
well as significant synthetic efforts toward that end.6
Figure 1. Structure of (-)-dictyostatin.
Curran recently reported that a synthetic analogue, 16-
normethyldictyostatin, is a subnanomolar antiproliferative against
human ovarian carcinoma 1A9 cells, making it equipotent to
dictyostatin.7 This observation, in combination with recent
success in using a catalytic, enantioselective hetero Diels-Alder
reaction in the context of synthesizing the C20-C32 subunit
of the phorboxazoles,8 stimulated us to evaluate a synthetic
approach to both 16-normethyldictyostatin and the parent natural
product. We noted the possiblity of employing a two-directional
(5) (a) Paterson, I.; Britton, R.; Delgado, O.; Meyer, A.; Poullennec, K. G.
Angew. Chem., Int. Ed. 2004, 43, 4629-4633. (b) Shin, Y.; Fournier, J.
-H.; Fukui, Y.; Bru¨ckner, A. M.; Curran, D. P. Angew. Chem., Int. Ed.
2004, 43, 4634-4637. (c) Fukui, Y.; Bru¨ckner, A. M.; Shin, Y.; Balachan-
dran, R.; Day, B. W.; Curran, D. P. Org. Lett. 2006, 8, 301-304. (d) O’Neil,
G. W.; Phillips, A. J. J. Am. Chem. Soc. 2006, 128, 5340-5341. (e)
Ramachandran, P. V.; Srivastava, A.; Hazra, D. Org. Lett. 2007, 9, 157-
160.
(6) (a) O’Neil, G. W.; Phillips, A. J. Tetrahedron Lett. 2004, 45, 4253-4256.
(b) Kangani, C. O.; Bru¨ckner, A. M.; Curran, D. P. Org. Lett. 2005, 7,
379-382. (c) Prusov, E.; Ro¨hm, H.; Maier, M. E. Org. Lett. 2006, 8, 1025-
1028. (d) Ja¨gel, J.; Maier, M. E. Synlett 2006, 5, 693-696. (e) Sharon, O.;
Monti, C.; Gennari, C. Tetrahedron 2007, 63, 5873-5878. (f) Monti, C.;
Sharon, O.; Gennari, C. J. Chem. Soc., Chem. Commun. 2007, 4271-4273.
(g) Saibaba, V.; Sampath, A.; Mukkanti, K.; Iqbal, J.; Das, P. Synthesis
2007, 2797-2802.
(7) (a) Shin, Y.; Fournier, J.-H.; Balachandran, R.; Madiraju, C.; Raccor, B.
S.; Zhu, G.; Edler, M. C.; Hamel, E.; Day, B. W., Curran, D. P. Org. Lett.
2005, 7, 2873-2876. (b) Jung, W.-H.; Harrison, C.; Shin, Y.; Fournier,
J.-H.; Balachandran, R.; Raccor, B. S.; Sikorski, R. P.; Vogt, A.; Curran,
D. P.; Day, B. W. J. Med. Chem. 2007, 50, 2951-2966.
(8) (a) Lucas, B. S.; Luther, L. M.; Burke, S. D. J. Org. Chem. 2005, 70,
3757-3760. (b) Lucas, B. S.; Gopalsamuthiram, V.; Burke, S. D. Angew.
Chem., Int. Ed. 2007, 46, 769-772.
(1) Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Boyd, M. R.; Schmidt, J. M. J. Chem.
Soc., Chem. Commun. 1994, 1111-1112.
(2) (a) Chavez, D. E.; Jacobsen, E. N. Org. Synth. 2005, 82, 34-39. (b)
Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N. Angew. Chem., Int. Ed.
1999, 38, 2398-2400.
(3) Isbrucker, R. A.; Cummins, J.; Pomponi, S. A.; Longley, R. E.; Wright,
A. E. Biochem. Pharmacol. 2003, 66, 75.
(4) (a) ter Haar, E.; Kowalski, R. J.; Hamel, E.; Lin, C. M.; Longley, R. E.;
Gunasekera, S. P.; Rosenkranz, H. S.; Day, B. W. Biochemistry 1996, 35,
243-250. (b) For a review, see: Paterson, I.; Florence, G. J. Eur. J. Org.
Chem. 2003, 12, 2193-2208.
9
10.1021/ja077336u CCC: $37.00 © 2007 American Chemical Society
J. AM. CHEM. SOC. 2007, 129, 16273-16277
16273