Ketones from Aldehydes and Arylboronic Acids
FULL PAPERS
d=6.08 (2H, s), 6.88 (1H, dd, J=1.4 Hz and 7.4 Hz), 7.16
(1H, t app, JH,H =JH,F =8.7 Hz), 7.33 (1H, s), 7.35 (1H, dd,
itial formation of the carbinol is explained by proto-
nation of this alkoxo-rhodium intermediate by the
water formed in the reaction medium (or directly by
the boronic acid), giving an active hydroxo-rhodium
species. Transmetallations of organoboron compounds
to alkoxo or hydroxo complexes of palladium,[10] rho-
dium[11] or ruthenium[12] have been described, allowing
regeneration of the aryl-metal species. We believe
that the role of the base is the regeneration of an
alkoxo-rhodium compound[13] [Eq. (2)], initiating the
J=7.4 Hz and 1.7 Hz), 7.79 (2H, dd, JH,H =8.7 Hz and JH,F
=
5.4 Hz); 13C NMR (75 MHz, CDCl3): d=101.9, 107.7, 109.8,
115.4 (d, JC,F =22 Hz), 126.6, 131.8, 132.3 (d, JC,F =9 Hz),
134.3, 148.0, 151.6, 165.1 (d, JC,F =252 Hz), 193.7; MS (IE,
70 eV): m/z=244 (M+, 73%), 149 (100%), 123 (36%), 95
(29%); HRMS: m/z=245.0607, calcd. for C14H10O3F:
245.0614.
In the case of hydroxy substituted arenes, the crude reac-
tion mixture was acidified with 10% aqueous HCl, the
aqueous phase extracted 3 times with CH2Cl2, the organic
phases dried over MgSO4 and concentrated.
Acknowledgements
The CNRS is gratefully acknowledged for financial support.
second catalytic cycle. b-Hydride elimination from the
generated alkoxo-rhodium(I) complex[14] would re-
lease the diaryl ketone and a rhodium(I) hydride spe-
cies.
References
The latter reacts with acetone to afford an alkoxo-
rhodium(I) complex which is suitable for transmetal-
lation with the boron reagent.[4]
[1] For some examples see: a) J. W. Lampe, C. K. Biggers,
J. M. Defauw, R. J. Foglegong, S. E. Hall, J. M. Heerd-
ing, S. P. Hollinhead, H. Hu, P. F. Hughes, G. E. Jagd-
mann, M. G. Johnson, Y.-S. Lai, C. T. Lowden, M. P.
Lynch, J. S. Mendoza, M. M. Murphy, J. W. Wilson,
L. M. Ballas, K. Carter, J. W. Darges, J. E. Davis, F. R.
Hubbard, M. L. Stamper, J. Med. Chem. 2002, 45, 2624;
b) T. Katoh, O. Ohmori, K. Iwasaki, M. Inoue, Tetrahe-
dron 2002, 58, 1289; c) F. Kaiser, L. Schwink, J. Velder,
H.-G. Schmalz, Tetrahedron 2003, 59, 3201; d) D.
Iijima, D. Tanaka, T. Ogamino, Y. Ishikawa, S. Nishiya-
ma, Tetrahedron Lett. 2004, 45, 5469; e) C. Zhang, J. G.
Ondeyka, K. B. Herath, Z. Guan, J. Collado, G. Platas,
F. Pelaez, P. S. Leavitt, A. Gurnett, B. Nare, P. Libera-
tor, S. B. Singh, J. Nat. Prod. 2005, 98, 611.
[2] Reviews: a) L. F. Tietze, Chem. Rev. 1996, 96, 115;
b) K. C. Nicolaou, T. Montagnon, S. A. Snyder, Chem.
Commun. 2003, 551; c) D. E. Fogg, E. N. dos Santos,
Coord. Chem. Rev. 2004, 248, 2365; d) H.-C. Guo, J.-A.
Ma, Angew. Chem. Int. Ed. 2005, 44, 2.
[3] a) T. Satoh, T. Itaya, M. Miura, M. Nomura, Chem.
Lett. 1996, 823; b) T. Ishiyama, J. Hartwig, J. Am.
Chem. Soc. 2000, 122, 12043; c) Y.-C. Huang, K. K. Ma-
jumdar, C.-H. Cheng, J. Org. Chem. 2002, 67, 1682.
[4] M. Pucheault, S. Darses, J.-P. Genet, J. Am. Chem. Soc.
2004, 126, 15356.
Conclusions
Thus, we have described the cross-coupling reaction
of organoboronic acids with aldehydes to access di-
À
rectly ketones under mild conditions via formal C H
bond activation. This efficient reaction is believed to
occur through a tandem process involving an addition
mechanism followed by an unusual oxidation via hy-
drogen transfer, with inexpensive acetone playing the
part of hydride acceptor.
Experimental Section
Typical Procedure for Carbonylation of Arylboronic
acids: Preparation of Benzo[1,3]dioxol-5-yl-(4-fluoro-
A
phenyl)methanone (Entry 10)
To a mixture of 4-fluorophenylboronic acid 2g (1 mmol,
140 mg), potassium carbonate (138 mg, 2 equivs.), chlorobis-
[5] For a rerview of rhodium-catalyzed processes involving
potassium organotrifluroborates, see: S. Darses, J.-P.
Genet, Eur. J. Org. Chem. 2003, 4313; see also: a) M.
Pucheault, S. Darses, J.-P. Genet, Eur. J. Org. Chem.
2002, 3552; b) M. Pucheault, S. Darses, J.-P. Genet, Tet-
rahedron Lett. 2004, 45, 4729; c) L. Navarre, S. Darses,
J.-P. Genet, Chem. Commun. 2004, 1108; d) L. Navarre,
S. Darses, J.-P. Genet, Eur. J. Org. Chem. 2004, 69;
e) L. Navarre, S. Darses, J.-P. Genet, Angew. Chem.
2004, 116, 737; Angew. Chem. Int. Ed. 2004, 43, 719; ;
f) M. Pucheault, S. Darses, J.-P. Genet, Chem.
Commun. 2005, 4714; g) L. Navarre, S. Darses, J.-P.
Genet, Adv. Synth Catal. 2006, 348, 317.
A
nal 1e (0.5 mmol, 75 mg) in degassed dioxane (2 mL) was
added a solution of tri-tert-butylphosphane in degassed tolu-
ene (15 mmol, 3M solution, 50 mL) followed by degassed
acetone (0.5 mL) under an argon atmosphere. After 30 min
stirring at room temperature, the flask was placed in a pre-
heated oil bath at 808C. The mixture was stirred until com-
pletion of the reaction (followed by GC analysis). After con-
centration under reduced pressure, the crude mixture was
purified by silica gel chromatography to afford the analyti-
cally pure ketone as a white solid; yield: 115.5 mg (85%).
1
CG: Rt =12.2 min; mp 1048C; H NMR (300 MHz, CDCl3):
Adv. Synth. Catal. 2007, 349, 1180 – 1184
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1183