S. O. Alapafuja et al. / Tetrahedron Letters 50 (2009) 7028–7031
7031
heated for 15 min at 160 °C under microwave irradiation (300 W) using a CEM
Discover system. The reaction mixture was cooled to room temperature and
volatiles were removed under reduced pressure. The residue was scrupulously
dried under high vacuo and the crude product 4, (a pale yellow solid) was used
in the next step without further purification.
Sulfonyl chlorides (5). To a stirred suspension of sulfonate 4 in anhydrous
benzene (7 mL)/DMF (0.1 ml), was added thionyl chloride (2.6 mmol) and the
mixture was heated at 50 °C for 3 h under argon. The reaction was quenched by
dropwise addition of water at room temperature and extracted with diethyl
ether. The organic layer was washed with brine, dried (MgSO4), and the solvent
was evaporated under reduced pressure. Purification by flash column
References and notes
1. Green, T. W.; Wuts, P. G. M. Protective Groups in Organic Chemistry, 3rd ed.;
Wiley-Interscience: New York, 1999.
2. Kociensky, P. J. Protecting Groups; Thieme: New York, 1994.
3. Levitt, G. In Synthesis and Chemistry of Agrochemicals II; Baker, D. R., Fenyes, J. G.,
Moberg, W. K., Eds.; American Chemical Society: Washington, DC, 1991; pp 16–
31.
4. Theodoridis, G. Tetrahedron 2000, 56, 2339.
5. Moore, J. D.; Herpel, R. H.; Lichtsinn, J. R.; Flynn, D. L.; Hanson, P. R. Org. Lett.
2003, 5, 105.
6. Blotny, G.; Biernat, J. F.; Taschner, E. Liebigs Ann. Chem. 1963, 663, 195.
7. Dubbaka, S. R.; Vogel, P. J. Am. Chem. Soc. 2003, 125, 15292.
8. Brewster, J. H.; Ciotti, C. J. J. Am. Chem. Soc. 1955, 77, 6214.
9. Kvrn, L.; Werder, M.; Hauser, H.; Carreira, E. M. Org. Lett. 2005, 7, 1145.
10. Lassalle, G.; Galtier, D.; Galli, F. Application: EU 643047 A1, 1995, p 12.
11. Makriyannis, A.; Nikas, S. P.; Alapafuja, S. O.; Shukla, V. G. Application: WO
2009052319 A1, Northeastern University: USA, 2009, p 209.
12. Makriyannis, A.; Nikas, S. P.; Alapafuja, S. O.; Shukla, V. G. Application: WO
2008013963 A2, University of Connecticut: USA, 2008, p 123.
13. Makriyannis, A.; Lin, S.; Hill, W. A. Application: WO 97/45407, University of
Connecticut: USA, 1997, p 34.
chromatography on silica gel (diethyl ether in hexane) gave
shown on Table 2.
5 in yields
Selected data of synthesized sulfonyl chlorides: 4-phenoxybutanesulfonyl
chloride (5b). IR (neat) 2935, 1513, 1371 (s), 1164 (s); 1H NMR (500 MHz,
CDCl3) d 7.29 (t, J = 8.2 Hz, 2H, 3-H, 5-H, –OPh), 6.97 (t, J = 8.2 Hz, 1H, 4-H, –
OPh), 6.89 (d, J = 8.2 Hz, 2H, 2-H, 6-H, –OPh), 4.04 (t, J = 5.7 Hz, 2H, –CH2–OPh),
3.80 (m as t, J = 8.0 Hz, half of an AA‘XX’ system, 2H, –CH2SO2Cl), 2.29 (m as qt,
J = 7.0 Hz, 2H, –CH2CH2SO2Cl), 2.01 (qt, J = 6.0 Hz, 2H, –CH2CH2CH2SO2Cl);
mass spectrum m/z (relative intensity) 250 (M++2, 7), 248 (M+, 21), 155 (16),
107 (22), 94 (100), 77 (21), 65 (15); exact mass calcd for C10H13ClO3S,
248.0274; found, 248.0276.
4-(2-Chlorophenoxy)butanesulfonyl chloride (5m). IR (neat) 2927, 1512, 1371 (s),
1163 (s); 1H NMR (500 MHz, CDCl3) d 7.39 (dd, J = 8.0 Hz, J = 1.5 Hz, 1H, 3-H, –
O–Ph–Cl), 7.24 (td, J = 8.0 Hz, J = 1.5 Hz, 1H, 5-H, –O–Ph–Cl), 6.94 (td, J = 8.0 Hz,
J = 1.5 Hz, 1H, 4-H, –O–Ph–Cl), 6.93 (dd, J = 8.0 Hz, J = 1.5 Hz, 1H, 6-H, –O–Ph–
Cl), 4.13 (t, J = 5.8 Hz, 2H, –CH2–O–Ph–Cl), 3.95 (m as t, J = 7.3 Hz, half of an
AA‘XX’ system, 2H, –CH2SO2Cl), 2.35 (m as qt, J = 7.5 Hz, 2H, –CH2CH2SO2Cl),
2.10 (qt, J = 6.0 Hz, 2H, –CH2CH2CH2SO2Cl); mass spectrum m/z (relative
intensity) 286 (M++4, 2), 284 (M++2, 13), 282 (M+, 19), 183 (5), 155 (31), 141
(15), 128 (100), 111 (6), 99 (7), 83 (8); exact mass calcd for C10H12Cl2O3S,
281.9884; found, 281.9887.
4-(3-Methylphenoxy)butanesulfonyl chloride (5n). IR (neat) 2943, 1513, 1372 (s),
1164 (s); 1H NMR (500 MHz, CDCl3) d 7.19 (t, J = 7.5 Hz, 1H, 5-H, –O–Ph–Me),
6.81 (d, J = 7.5 Hz, 1H, 4-H, –O–Ph–Me), 6.73 (s, 1H, 2-H, –O–Ph–Me), 6.71 (d,
J = 7.5 Hz, 1H, 6-H, –O–Ph–Me), 4.04 (t, J = 5.5 Hz, 2H, –CH2–O–Ph–Me), 3.81
(m as t, J = 7.3 Hz, half of an AA‘XX’ system, 2H, –CH2SO2Cl), 2.35 (s, 3H, –Me),
14. Deutsch, D. G.; Lin, S.; Hill, W. A. G.; Morse, K. L.; Salehani, D.; Arreaza, G.;
Omeir, R. L.; Makriyannis, A. Biochem. Biophys. Res. Commun. 1997, 231, 217.
15. Gifford, A. N.; Magalie, B.; Lin, S.; Goutopoulos, A.; Makriyannis, A.; Volkow, N.
D.; Gatley, J. S. Eur. J. Pharmacol. 1999, 383, 9.
16. Zvonok, N.; Pandarinathan, L.; Williams, J.; Johnston, M.; Karageorgos, I.;
Janero, D. R.; Krishnan, S. C.; Makriyannis, A. Chem. Biol. (Cambridge, MA, United
States) 2008, 15, 854.
17. Karanian, D. A.; Karim, S. L.; Wood, J.-A. T.; Williams, J. S.; Lin, S.; Makriyannis,
A.; Bahr, B. A. J. Pharmacol. Exp. Ther. 2007, 322, 1059.
18. Segall, Y.; Quistad, G. B.; Nomura, D. K.; Casida, J. E. Bioorg. Med. Chem. Lett.
2003, 13, 3301.
19. Cravatt, B. F.; Giang, D. K.; Mayfield, S. P.; Boger, D. L.; Lerner, R. A.; Gilula, N. B.
Nature 1996, 384, 83.
20. Giang, D. K.; Cravatt, B. F. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 2238.
21. Bracey, M. H.; Hanson, M. A.; Masuda, K. R.; Stevens, R. C.; Cravatt, B. F. Science
2002, 298, 1793.
22. Devane, W. A.; Hanus, L.; Breuer, A.; Pertwee, R. G.; Stevenson, L. A.; Griffin, G.;
Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Science 1992, 258,
1946.
23. Boger, D. L.; Henriksen, S. J.; Cravatt, B. F. Curr. Pharm. Des. 1998, 4, 303–314.
24. Cravatt, B. F.; Lichtman, A. H. Curr. Opin. Chem. Biol. 2003, 7, 469.
25. Lambert, D. M.; Fowler, C. J. J. Med. Chem. 2005, 48, 5059.
26. Di Marzo, V. Nat. Rev. Drug Disc. 2008, 7, 438.
2.29 (m as qt, J = 7.1 Hz, 2H, –CH2CH2SO2Cl), 2.02 (qt, J = 6.9 Hz, 2H,
–
CH2CH2CH2SO2Cl); mass spectrum m/z (relative intensity) 264 (M++2, 3), 262
(M+, 9), 162 (21), 147 (12), 131 (19), 119 (42), 108 (100), 91 (95), 77 (22), 64
(43); exact mass calcd for C11H15ClO3S, 262.0430; found, 262.0429.
53. Bailey, W. F.; Punzalan, E. R. J. Org. Chem. 1990, 55, 5404.
54. Typical procedure for the conversion of sulfonyl chlorides 5b, 5m, and 5n to
fluorides 9b, 9m, and 9n.
To a stirred solution of sulfonyl chloride 5 (1 equiv) in dry acetone, was added
anhydrous NH4F (2.3 equiv) and the mixture refluxed for 2 h under argon. The
solvent was evaporated under reduced pressure and the residue was dissolved
in diethyl ether. The ethereal solution was washed with water and brine, dried
(MgSO4), and evaporated in vacuo. Purification by flash column
chromatography on silica gel (diethyl ether in hexane) gave sulfonyl fluoride
9 as a white solid in 90–92% yield.
27. Sandler, S. R.; Karo, W.. In Organic Functional Group Preparations; Academic
Press: New York, 1983; Vol. I.
28. Sprague, J. M.; Johnson, T. B. J. Am. Chem. Soc. 1937, 59, 1837.
29. Johnson, T. B. Proc. Natl. Acad. Sci. U.S.A. 1939, 25, 448.
30. Meinzer, A.; Breckel, A.; Thaher, B. A.; Manicone, N.; Otto, H.-H. Helv. Chim. Acta
2004, 87, 90.
4-Phenoxybutanesulfonyl fluoride (9b). IR (neat) 2940, 1513, 1398 (s), 1194 (s);
1H NMR (500 MHz, CDCl3) d 7.30 (td, J = 8.5 Hz, J = 1.0 Hz, 2H, 3-H, 5-H, –OPh),
6.97 (td, J = 8.5 Hz, J = 1.0 Hz, 1H, 4-H, –OPh), 6.89 (dd, J = 8.5 Hz, J = 1.0 Hz, 2H,
2-H, 6-H, –OPh), 4.03 (t, J = 5.6 Hz, 2H, –CH2–OPh), 3.50 (m as dt, J = 11.0 Hz,
J = 4.5 Hz, 2H, –CH2SO2F), 2.20 (m as qt, J = 7.5 Hz, 2H, –CH2CH2SO2F), 2.00 (qt,
J = 7.0 Hz, 2H, –CH2CH2CH2SO2F); 13C NMR (100 MHz, CDCl3) d 158.48, 129.58,
121.11, 114.41, 66.52, 50.65 (d, J = 16.4 Hz, –CH2SO2F), 27.43, 20.91; mass
spectrum m/z (relative intensity) 232 (M+, 25), 139 (9), 107 (6), 94 (100), 77
(13); exact mass calcd for C10H13FO3S, 232.0569; found, 232.0572. Anal. Calcd
(C10H13FO3S): C, 51.71; H, 5.64. Found: C, 52.09; H, 5.75.
4-(2-Chlorophenoxy)butanesulfonyl fluoride (9m). IR (neat) 2929, 1511, 1394 (s),
1197 (s); 1H NMR (500 MHz, CDCl3) d 7.40 (dd, J = 8.0 Hz, J = 1.5 Hz, 1H, 3-H, –
O–Ph–Cl), 7.24 (td, J = 8.0 Hz, J = 1.5 Hz, 1H, 5-H, –O–Ph–Cl), 6.94 (td, J = 8.0 Hz,
J = 1.5 Hz, 1H, 4-H, –O–Ph–Cl), 6.93 (dd, J = 8.0 Hz, J = 1.5 Hz, 1H, 6-H, –O–Ph–
Cl), 4.12 (t, J = 6.0 Hz, 2H, –CH2–O–Ph–Cl), 3.64 (m as dt, J = 11.0 Hz, J = 3.5 Hz,
2H, –CH2SO2F), 2.26 (m as qt, J = 8.0 Hz, 2H, –CH2CH2SO2F), 2.08 (qt, J = 6.0 Hz,
2H, –CH2CH2CH2SO2F); mass spectrum m/z (relative intensity) 268 (M++2, 7),
266 (M+, 21), 238 (9), 196 (10), 149 (12), 139 (14), 128 (100), 99 (6); exact mass
calcd for C10H12FClO3S, 266.0180; found, 266.0178.
31. Piatek, A.; Chapuis, C.; Jurczak, J. Helv. Chim. Acta 2002, 85, 1973.
32. Humljan, J.; Gobec, S. Tetrahedron Lett. 2005, 46, 4069.
33. Monnee, M. C.; Marijne, M. F.; Brouwer, A. J.; Liskamp, R. M. Tetrahedron Lett.
2000, 41, 7991.
34. Schindler, W. Helv. Chim. Acta 1957, 40, 2148.
35. Park, Y. J.; Shin, H. H.; Kim, Y. H. Chem. Lett. 1992, 1483.
36. Langler, R. F. Can. J. Chem. 1976, 54, 498.
37. Langler, R. F.; Marini, Z. A.; Spalding, E. S. Can. J. Chem. 1979, 57, 3193.
38. Douglass, I. B. J. Org. Chem. 1974, 39, 563.
39. Kim, D. W.; Ko, Y. K.; Kim, S. H. Synthesis 1992, 1203.
40. Nishiguchi, A.; Maeda, K.; Miki, S. Synthesis 2006, 4131.
41. Sohmiya, H.; Kimura, T.; Fujita, M.; Ando, T. Tetrahedron 1998, 54, 13737.
42. Prakash, G. K. S.; Mathew, T.; Panja, C.; Olah, G. A. J. Org. Chem. 2007, 72, 5847.
43. Gilbert, E. E. Synthesis 1969, 3.
44. Quast, H.; Kees, F. Synthesis 1974, 489.
45. King, J. F.; Harding, D. R. K. J. Am. Chem. Soc. 1976, 98, 3312.
46. Castang, S.; Chantegrel, B.; Deshayes, C.; Dolmazon, R.; Gouet, P.; Haser, R.;
Reverchon, S.; Nasser, W.; Hugouvieux-Cotte-Pattat, N.; Doutheau, A. Bioorg.
Med. Chem. Lett. 2004, 14, 5145.
47. Johnston, T. P.; Kussner, C. L.; Holum, L. B. J. Org. Chem. 1960, 25, 399.
48. Markgraf, H. J.; Hess, A. B., Jr.; Nichols, C. W.; King, R. W. J. Org. Chem. 1964, 29,
1499.
49. Abramovitch, R. A.; Holcomb, W. D.; Thompson, W. M.; Wake, S. J. Org. Chem.
1984, 49, 5124.
50. Erman, W. F.; Kretschmar, H. C. J. Org. Chem. 1961, 26, 4841.
51. Blotny, G. Tetrahedron Lett. 2003, 44, 1499.
4-(3-Methylphenoxy)butanesulfonyl fluoride (9n). IR (neat) 2954, 1515, 1398
(s), 1192 (s); 1H NMR (500 MHz, CDCl3) d 7.19 (t, J = 7.5 Hz, 1H, 5-H, –O–Ph–
Me), 6.81 (d, J = 7.5 Hz, 1H, 4-H, –O–Ph–Me), 6.73 (s, 1H, 2-H, –O–Ph–Me),
6.71 (d, J = 7.5 Hz, 1H, 6-H, –O–Ph–Me), 4.04 (t, J = 6.0 Hz, 2H, –CH2–O–Ph–
Me), 3.52 (m as dt, J = 11.0 Hz, J = 3.5 Hz, 2H, –CH2SO2F), 2.36 (s, 3H, –Me),
2.21 (m as qt, J = 7.6 Hz, 2H, –CH2CH2SO2F), 2.00 (qt, J = 6.7 Hz, 2H,
–
CH2CH2CH2SO2F); mass spectrum m/z (relative intensity) 246 (M+, 31), 139
(8), 128 (9), 108 (100), 91 (12), 77 (6); exact mass calcd for C11H15FO3S,
246.0726; found, 246.0729.
52. Typical procedure for the conversion of bromides 3 to sulfonyl chlorides 5 via
sodium sulfonates 4.Sulfonic acid sodium salts (4). A mixture of bromide 3
(1 mmol) and Na2SO3 (1.6 mmol) in THF/EtOH/H2O (1:2:2 mixture, 5 mL) was