9088
M.-C. Tseng et al. / Tetrahedron Letters 48 (2007) 9085–9089
Chem. Soc., Perkin Trans. 1 2000, 505–513; (b) Zhang,
X.-M.; Bordwell, F. G. J. Am. Chem. Soc. 1994, 116, 968–
972.
ANT Technology (Taipei, Taiwan) and in part by the
National Science Council (Taiwan, ROC). We also
thank the reviewers for their constructive comments.
11. Glenn, A. G.; Jones, P. B. Tetrahedron Lett. 2004, 45,
6967–6969.
12. McNulty, J.; Cheekoori, S.; Nair, J. J.; Larichev, V.;
Capretta, A.; Robertson, A. J. Tetrahedron Lett. 2005, 46,
3641–3644.
References and notes
13. General procedure for the reactions of ionic liquid 1 with
substituted benzoate salts by microwaves: To a microwave
reaction vessel containing the ionic liquid 1 (0.8 g) was
added the substituted benzoic acid (150 mg; 1.23 mmol for
benzoic acid, 1.10 mmol for p-toluic acid, 1.09 mmol for
anthranilic acid) and sodium carbonate powder (300 mg,
2.8 mmol). The vessel was placed inside a CEM Discover
single-mode microwave synthesizer equipped with a mag-
netic stirrer where it was exposed to microwaves at 180 ꢀC
(30 W) for 20 min. The progress of the reaction could be
monitored by thin layer chromatography and the exper-
imental condition was, however, not optimized. After
microwaves, the reaction solution was mixed with ethyl
acetate (5 mL), filtered and then concentrated to dryness
in vacuo. The desired products were purified by chroma-
tography (ethyl acetate/hexane = 1:40, v/v) to finally
afford the corresponding aryl ketones (2.1–7.6% yield).
1. For recent reviews, see: (a) Xue, H.; Verma, R.; Shreeve, J.
M. J. Fluorine Chem. 2006, 127, 159–176; (b) Singh, R. P.;
Verma, R. D.; Meshri, D. T.; Shreeve, J. M. Angew.
Chem., Int. Ed. 2006, 45, 3584–3601; (c) MacFarlane, D.
R.; Pringle, J. M.; Johansson, K. M.; Forsyth, S. A.;
Forsyth, M. Chem. Commun. 2006, 1905–1917; (d) Canal,
J. P.; Ramnial, T.; Dickie, D. A.; Clyburne, J. A. C. Chem.
Commun. 2006, 1809–1818; (e) Sheldon, R. A. Green
Chem. 2005, 7, 267–278; (f) Jain, N.; Kumar, A.; Chau-
han, S.; Chauhan, S. M. S. Tetrahedron 2005, 61, 1015–
1060; (g) Chiappe, C.; Pieraccini, D. J. Phys. Org. Chem.
2005, 18, 275–297.
2. Bradaric, C. J.; Downard, A.; Kennedy, C.; Robertson, A.
J.; Zhou, Y. Green Chem. 2003, 5, 143–152.
3. (a) Lin, Y.-L.; Kan, H.-C.; Chu, Y.-H. Tetrahedron 2007,
63, 10949–10957; (b) Kan, H.-C.; Tseng, M.-C.; Chu,
Y.-H. Tetrahedron 2007, 63, 1644–1653; (c) Cheng, J.-Y.;
Chu, Y.-H. Tetrahedron Lett. 2006, 47, 1575–1579; (d)
Tseng, M.-C.; Liang, Y.-M.; Chu, Y.-H. Tetrahedron Lett.
2005, 46, 6131–6136; (e) Yen, Y.-H.; Chu, Y.-H. Tetra-
hedron Lett. 2004, 45, 8137–8140; (f) Hsu, J.-C.; Yen,
Y.-H.; Chu, Y.-H. Tetrahedron Lett. 2004, 45, 4673–
4676.
4. (a) Ramnial, T.; Ino, D. D.; Clyburne, J. A. C. Chem.
Commun. 2005, 325–327; (b) Gorodetsky, B.; Ramnial, T.;
Branda, N. R.; Clyburne, J. A. C. Chem. Commun. 2004,
1972–1973.
1
Satisfactory H and 13C NMR, IR, and MS results were
obtained for all products. Heptanophenone 4a is a
commercially available compound.
Pentadecanophenone 4b: 13 mg (3.5% isolated yield);
white solid; mp 43–44 ꢀC; 1H NMR (CDCl3, 400 MHz)
d 0.86 (t, J = 7.0 Hz, CH3, 3H), 1.24 (br s, 11 · CH2, 22H),
1.71 (qn, J = 7.5 Hz, CH2, 2H), 2.94 (t, J = 7.4 Hz,
CH2C(@O), 2H), 7.43 (t, J = 7.5 Hz, aryl H, 2H), 7.53
(t, J = 7.2 Hz, aryl H, 1H), 7.94 (d, J = 7.3 Hz, aryl H,
2H); 13C NMR (CDCl3, 100 MHz) d 14.1, 22.7, 24.4, 29.3,
29.4, 29.4, 29.5, 29.5, 29.6, 29.6, 29.7, 29.7, 31.9, 38.6,
128.0, 128.5, 132.8, 137.2, 200.6; FTIR (KBr) m 1685 (s)
cmÀ1; EI-HRMS m/z [M+] calcd for C21H34O: 302.2610;
found, 302.2608.
1-(2-Aminophenyl)heptan-1-one 4c: 17 mg (7.6% isolated
yield); colorless oil; 1H NMR (CDCl3, 400 MHz) d 0.85
(t, J = 6.9 Hz, CH3, 3H), 1.23–1.32 (m, 3 · CH2, 6H),
1.68 (qn, J = 7.5 Hz, CH2, 2H), 2.31 (t, J = 7.6 Hz, CH2
C(@O), 2H), 7.05 (t, J = 7.3 Hz, aryl H, 1H), 7.26 (t,
J = 7.8 Hz, aryl H, 2H), 7.50 (d, J = 7.9 Hz, 1H), 7.69 (br
s, NH2, 2H); 13C NMR (CDCl3, 100 MHz) d 14.0, 22.4,
25.6, 28.9, 31.5, 27.7, 119.9, 119.9, 124.1, 128.8, 128.8,
138.1, 171.7; FTIR (KBr) m 1661 (s) cmÀ1; EI-HRMS m/z
[M+] calcd for C13H19NO: 205.1467; found, 205.1471.
1-(2-Aminophenyl)pentadecan-1-one 4d: 7.7 mg (2.2%
isolated yield); white solid; mp 79–80 ꢀC; 1H NMR
(CDCl3, 400 MHz) d 0.86 (t, J = 7.0 Hz, CH3, 3H), 1.24
(br s, 11 · CH2, 22H), 1.70 (qn, J = 7.3 Hz, CH2, 2H),
2.32 (t, J = 7.6 Hz, CH2(C@O), 2H), 7.07 (t, J = 7.3 Hz,
aryl H, 1H), 7.23 (br s, NH2, 2H), 7.29 (t, J = 7.8 Hz, 2H),
7.49 (d, J = 7.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) d
14.1, 22.7, 25.6, 29.3, 29.3, 29.4, 29.5, 29.6, 29.6, 29.7,
29.7, 29.7, 31.9, 37.9, 119.8, 119.8, 124.1, 129.0, 129.0,
138.0, 171.4; FTIR (KBr) m 1660 (s) cmÀ1; EI-HRMS
m/z [M+] calcd for C21H35NO: 317.2719; found, 317.
2642.
5. This ionic liquid is available from Cytec (CYPHOSꢂ IL
101) and Fluka/Riedel-de Hae¨n. According to Cytec
product description, the ionic liquid typically assays 96
to 97% trihexyl(tetradecyl)phosphonium chloride (1) with
trace contaminants of tetradecene isomers (0.1–0.4%),
hydrochloric acid (0.1–0.5%), and trihexylphosphonium
hydrochloride (0.1–1.2%).
6. For a recent review on the reactivity of ionic liquids, see:
Chowdhury, S.; Mohan, R. S.; Scott, J. L. Tetrahedron
2007, 63, 2363–D2389.
7. Acidity values for C-2 protons (pKa ꢀ 20–30) of a series of
1,3-dialkylimidazolium cations have been measured and
reported: (a) Wang, R.; Yuan, L.; Macartney, D. H.
Chem. Commun. 2006, 2908–2910; (b) Amyes, T. L.;
Diver, S. T.; Richard, J. P.; Rivas, F. M.; Toth, K. J. Am.
Chem. Soc. 2004, 126, 4366–4374; (c) Magill, A. M.;
Cavell, K. J.; Yates, B. F. J. Am. Chem. Soc. 2004, 126,
8717–8724.
8. Del Sesto, R. E.; Corley, C.; Robertson, A.; Wilkes, J. S.
J. Organomet. Chem. 2005, 690, 2536–2543.
9. General procedure for deuterium isotope exchange experi-
ments: The 1H NMR of a mixture of CD3OD/D2O (1:1, v/
v; 0.5 mL) containing 0.02 M ionic liquid 1 (5.2 mg) was
recorded first. To it was then added 0.1 M KOD (3.0 mg).
1
The H NMR spectrum was therefore collected at regular
intervals. The ratio of the integrals of the P–CH2 position
hydrogens to that of the terminal methyl hydrogens (a
non-exchangeable position) on the alkyl group in 1 was
obtained. These values were finally plotted to determine
the rates of the exchange reactions.
1-p-Tolylheptan-1-one 4e: 9.2 mg (4.5% isolated yield);
1
white solid; mp 38–39 ꢀC; H NMR (CDCl3, 400 MHz) d
0.87 (t, J = 7.0 Hz, CH3, 3H), 1.29–1.35 (m, 3 · CH2, 6H),
1.70 (qn, J = 7.4 Hz, CH2, 2H), 2.38 (s, ArCH3, 3H), 2.90
(t, J = 7.3 Hz, CH2C(@O), 2H), 7.23 (d, J = 8.0 Hz, aryl
H, 2H), 7.84 (d, J = 8.0 Hz, aryl H, 2H); 13C NMR
(CDCl3, 100 MHz) d 14.0, 21.6, 22.5,29.1, 31.7, 38.5,
128.2, 129.2, 134.7, 143.5, 200.3; FTIR (KBr) m 1675 (s)
10. The proton removed to form the corresponding ylide in
alkyl(triphenyl)phosphonium salts in dimethyl sulfoxide
has been reported to have a pKa value in the range of 21–
23. For references, see: (a) Russell, M. G.; Warren, S. J.