366
F. Roschangar et al. / Tetrahedron Letters 49 (2008) 363–366
internal alkynes (a) Shen, M.; Li, G.; Lu, B. Z.; Hossain,
Acknowledgments
A.; Roschangar, F.; Farina, V.; Senanayake, C. H. Org.
Lett. 2004, 6, 4129; (b) Li, G.; Liu, J.; Lu, Z.-H.;
Roschangar, F.; Senanayake, C. H.; Shen, M. U.S. Patent
Application US 2,005,209,465, 2005.
We thank Dr. Ruomei Li, Soraia Ahmadyar, Joseph
Russell and Natasha Reddinger for technical support.
7. (a) Pfeffer, M. Recl. Trav. Chim. Pays-Bas 1990, 109, 567;
(b) Ryabov, A. D. Synthesis 1985, 3, 233.
Supplementary data
8. Dimerization of anilines 1 can occur via double Buch-
wald–Hartwig amination (a) Guram, A. S.; Rennels, R.
A.; Buchwald, S. L. Angew. Chem., Int. Ed. Engl. 1995, 34,
1348; (b) Louie, J.; Hartwig, J. F. Tetrahedron Lett. 1995,
36, 3609.
Experimental procedures and characterizations for com-
pounds 3a–j, 4a–f and 4h–j are available. Supplementary
data associated with this article can be found, in the
9. When 2-iodo-5-methoxyaniline (1b; R1 = OMe) and 2-
iodophenylamine (1c; R1 = H) were annulated with
2-cyclopentylethynylpyridine (2a), the molar ratio of
isomeric indoles 3 and 4 declined from 94:6, obtained
with aniline 1a, to 72:28 and 89:11, respectively. The
reduced regioselectivity observed with anilines 1b and 1c
versus 1a may be the result of weaker coordination
between the more electron-rich palladium and the pyridyl
nitrogen of postulated complex 6 (Scheme 2).
References and notes
1. Joule, J. A. Sci. Synth. 2001, 10, 361–652.
2. Recent reviews on indole ring syntheses (a) Gilchrist, T. L.
J. Chem. Soc., Perkin Trans. 1 2001, 2491; (b) Ketcha, D.
M. Prog. Heterocycl. Chem. 2001, 13, 111; (c) Gribble, G.
W. J. Chem. Soc., Perkin Trans. 1 2000, 1045; (d)
Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106,
2875.
10. The structural assignments were based on synthesis of
authentic samples for 3a and 3d via cross-coupling
reactions of 2-bromo-3-cyclopentyl-1-methyl-1H-indole-
6-carboxylic acid methyl ester (Khodabocus, A.; Li, G.;
Lu, Z.-H.; Roschangar, F.; Senanayake, C.H.; Shen, M.
International Patent Application WO 2005092855, 2005)
and NOE studies for 3/4b 3/4i and 3/4j.
11. The predicted pKa values of the protonated pyridines at
25 ꢁC and zero ionic strength in aqueous solutions were
obtained using the ACD/I-Lab Web service (ACD/pKa
8.02).
12. The theoretical A-values for each substituent were deter-
mined from the following equation: A-value = DHf
(axial) ꢀ DHf (equatorial), where DHf (axial) is the calcu-
lated heat of formation of the substituent in the axial
position of a cyclohexane ring and DHf (equatorial) is the
calculated heat of formation of the substituent in the
equatorial position of a cyclohexane ring. To ensure that
the conformations studied were the lowest energy confor-
mation of the system, a conformational analysis of the
substituted cyclohexane ring, coupled with a torsional
energy profile about the cyclohexyl-substituent bond
(DFT, Jaguar v. 5.5, Schro¨dinger, LLC, Portland, Oregon,
2003), was performed for each substituent in its axial and
3. (a) Miyata, O.; Kimura, Y.; Muroya, K.; Hiramatsu, H.;
Naito, T. Tetrahedron Lett. 1999, 40, 5717; (b) Wagaw, S.;
Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121,
10251; (c) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am.
Chem. Soc. 1998, 120, 6621; (d) Arcadi, A.; Cacchi, S.;
Fabrizi, G.; Marinelli, F. Synlett 2000, 394; (e) Battistuzzi,
G.; Cacchi, S.; Fabrizi, G. Eur. J. Org. Chem. 2002, 2671;
(f) Takeda, A.; Kamijo, S.; Yamamoto, Y. J. Am. Chem.
Soc. 2000, 122, 5662; (g) Tokuyama, H.; Kaburagi, Y.;
Chen, X. Q.; Fukuyama, T. Synthesis 2000, 429; (h)
Murphy, J. A.; Scott, K. A.; Sinclair, R. S.; Martin, C. G.;
Kennedy, A. R.; Lewis, N. J. Chem. Soc., Perkin Trans. 1
2000, 2395; (i) Chen, C.; Lieberman, D. R.; Larsen, R. D.;
Verhoeven, T. R.; Reider, P. J. J. Org. Chem. 1997, 62,
2676; (j) Rutherford, J. L.; Rainka, M. P.; Buchwald, S. L.
J. Am. Chem. Soc. 2002, 124, 15168; (k) Furstner, A.;
¨
Bogdanovic, B. Angew. Chem., Int. Ed. Engl. 1996, 35,
2442; (l) Shimada, T.; Nakamura, I.; Yamamoto, Y. J.
Am. Chem. Soc. 2004, 126, 10546; (m) Nakamura, Y.;
Ukita, T. Org. Lett. 2002, 4, 2317; (n) Yasuhara, A.;
Takeda, Y.; Suzuki, N.; Sakamoto, T. Chem. Pharm. Bull.
2002, 50, 235; (o) Reding, M. T.; Kaburagi, Y.; Toku-
yama, H.; Fukuyama, T. Heterocycles 2002, 56, 313; (p)
Liu, Y.; Gribble, G. W. Tetrahedron Lett. 2002, 43, 7135;
(q) Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am.
Chem. Soc. 2004, 126, 10546; (r) Mukai, C.; Takahashi, Y.
Org. Lett. 2005, 7, 5793; (s) Babu, G.; Orita, A.; Otera, J.
Org. Lett. 2005, 7, 4641; (t) Lu, B. Z.; Zhao, W.; Wei,
H.-X.; Dufour, M.; Farina, V.; Senanayake, C. H. Org.
Lett. 2006, 8, 3271; (u) Cacchi, S.; Fabrizi, G.; Goggia-
mani, A. Adv. Synth. Catal. 2006, 348, 1301; (v) Shen, Z.;
Lu, X. Tetrahedron 2006, 62, 10896.
equatorial position on
a cyclohexyl ring. The DHf
(formation) values were calculated using MOPAC6
(AM1, geometry optimization, in Cerius2 v.4.9, Accelrys
Inc., San Diego, CA, 2003).
13. Agilent 1100 HPLC system. Column: Agilent Zorbax
Eclipse XDB-C8, 4.6 · 150 mm, 5 lm; P/N 935967-906.
Mobile phase: A = water w/0.1% v/v trifluoroacetic acid
(TFA), B = acetonitrile w/0.1% v/v TFA. Gradient Pro-
file: 30–95% B over 14 min. UV detection @ 248 nm.
1.0 mL/min flow rate with injection volume of 5 lL.
14. It was demonstrated that the basicity, or the pKa, of
phosphines is related primarily to their r-donicity, which
is the ability of a ligand to donate r-electrons to a
transition metal, and to a lesser degree to the size of the
ligand, and it was concluded that pKa values are reason-
able measures of the r-donicity for those ligands that are
pure r-donor ligands and not p-acceptors Rahman, M. d.
M.; Liu, H.-Y.; Eriks, K.; Prock, A.; Giering, W. P.
Organometallics 1989, 8, 1.
4. (a) Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org.
Chem. 1998, 63, 7652; (b) Larock, R. C.; Yum, E. K.
J. Am. Chem. Soc. 1991, 113, 6689.
5. Larock’s methodology has recently been employed by
other research groups for the synthesis of 2,3-disubstituted
indoles (a) Chae, J.; Konno, T.; Ishihara, T.; Yamanaka,
H. Chem. Lett. 2004, 33, 314; (b) Konno, T.; Chae, J.;
Ishihara, T.; Yamanaka, H. J. Org. Chem. 2004, 69, 8258;
(c) Charrier, N.; Demont, E.; Dunsdon, R.; Maile, G.;
Naylor, A.; O’Brien, A.; Redshaw, S.; Theobald, P.;
Vesey, D.; Walter, D. Synthesis 2006, 3467.
15. Palladium–olefin complexes with pyridine r-donor ligands
have been isolated and characterized. For example, see
Kluwer, A. M.; Elsevier, C. J.; Buhl, M.; Lutz, M.; Spek,
¨
A. L. Angew. Chem., Int. Ed. 2003, 42, 3501.
6. Our group also developed a catalyst/ligand system that
allowed for Larock indolization of 2-chloroanilines with