The Journal of Organic Chemistry
Article
mixture was stirred at room temperature for 3 h. After usual workup,
AUTHOR INFORMATION
Corresponding Author
+390382987323.
■
bulb-to-bulb distillation afforded 1c as a colorless oil (360 mg, 54%
1
yield). 1c: H NMR (CDCl3) δ 7.40−7.35 (d, 1 H, J = 9 Hz), 6.95−
6.90 (d, 1 H, J = 3 Hz), 6.85−6.80 (dd, 1 H, J = 3 and 9 Hz), 4.25−
4.05 (m, 4 H), 3.80 (s, 3 H), 1.40−1.30 (m, 6 H), 0.30 (s, 9 H); 13C
NMR (CDCl3) δ 155.7, 149.5, 131.4, 120.7 (CH), 118.5 (CH), 114.6
(CH), 64.3 (CH2), 55.4 (CH3), 16.0 (CH3), 15.9 (CH3), −1.05
(CH3); IR (neat) ν/cm−1 2985, 1248, 1038, 974, 840. Anal. Calcd for
C14H25O5PSi: C, 50.59; H, 7.58. Found: C, 50.6; H, 7.6.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Irradiation of 1a in Neat 2,2,2-Trifluoroethanol (TFE). A
solution of mesylate 1a (412 mg, 1.5 mmol, 0.05 M), cesium carbonate
(244 mg, 0.75 mmol, 0.025 M), and acetone (3 mL, 0.9 M) in TFE
(30 mL) was irradiated for 8 h. After the solvent was removed in
vacuo, column chromatography afforded 64 mg of 3-methoxyphenyl
trimethylsilane 2 (colorless oil, 24% yield) and 234 mg of 2-(2,2,2-
trifluoroethoxy)-5-methoxytrimethylsilylbenzene 3 (colorless oil, 56%
yield). GC analysis also showed the presence of 4-methoxy-2-
trimethylsilylphenol (4, 4% yield). 2: Spectroscopic data are in accord
with the literature.25 Anal. Calcd for C10H16OSi: C, 66.61; H, 8.94.
Found: C, 66.6; H, 8.9. 3: 1H NMR (CDCl3) δ 7.00−6.95 (d, 1H, J =
3 Hz), 6.85−6.80 (dd, 1H, J = 3 and 8 Hz), 6.75−6.70 (d, 1H, J = 8
Hz), 4.30−4.20 (q, 2H, J = 8 Hz), 3.80 (s, 3 H), 0.30 (s, 9 H);
13C NMR (CDCl3) δ 155.5, 154.3, 130.1, 130.0 (q, CF3, J = 275 Hz),
121.6 (CH), 114.2 (CH), 110.5 (CH), 65.5 (q, CH2, J = 35 Hz), 55.6
(CH3), −1.3 (CH3); IR (neat) ν/cm−1 2955, 1482, 1269, 1216, 1165,
839. Anal. Calcd for C12H17F3O2Si: C, 51.78; H, 6.16. Found: C, 51.8;
H, 6.1.
Irradiation of 1b in 5:1 MeCN/H2O Mixture. Triflate 1b (493
mg, 1.5 mmol, 0.05 M) and acetone (3 mL, 0.9M) were dissolved in
30 mL of 5:1 MeCN/H2O mixture and irradiated for 24 h (85%
consumption of 1b). The solvent was removed in vacuo and the
residue purified by silica gel chromatography giving 44 mg of 2 (19%
yield based on the consumption of 1b) and 142 mg of 2-trimethylsilyl-
4-methoxyacetanilide (7, 47% yield based on the consumption of 1b).
7: Spectroscopic data are in accord with the literature.25 Anal. Calcd
for C12H19NO2Si: C, 60.72; H, 8.07; N, 5.90. Found: C, 60.7; H, 8.1;
N, 5.9.
Irradiation of 1a in TFE in the Presence of Benzene. Mesylate
1a (412 mg, 1.5 mmol, 0.05 M), cesium carbonate (244 mg,
0.75 mmol, 0.025 M), acetone (3 mL, 0.9 M), and benzene (27.5 mL,
30 mmol, 1 M) were dissolved in 30 mL of TFE and irradiated for 7 h.
Purification of the raw product by silica gel chromatography afforded
a mixture of 2 (51 mg, 19% yield), 3 (175 mg, 42% yield), and
4-methoxy-2-trimethylsilylbiphenyl (5, 73 mg, 19% yield). 5: 1H NMR
(CDCl3, from the mixture) δ 7.45−7.25 (m, 5H), 7.25−7.15 (m, 1H),
6.95−6.85 (m, 2H), 3.90 (s, 3H), 0.10 (s, 9H); IR (of the mixture)
ν/cm−1 2954, 1587, 1478, 1216, 1057, 1040, 838.
Irradiation of 1b in TFE in the Presence of Allyltrimethylsi-
lane (ATMS). Triflate 1b (493 mg, 1.5 mmol, 0.05 M), cesium
carbonate (244 mg, 0.75 mmol, 0.025 M), acetone (3 mL, 0.9 M), and
ATMS (2.4 mL, 15 mmol, 0.5 M) were dissolved in TFE (30 mL) and
irradiated for 12 h (88% consumption of 1b). Purification by column
chromatography yielded 3 (95 mg, 26% yield based on the
consumption of 1b) and 2-allyl-5-methoxyphenyltrimethylsilane 6
(colorless oil, 145 mg, 50% yield based on the consumption of 1b). 6:
1H NMR (CDCl3), δ: 7.15−7.10 (d, 1 H, J = 8.5 Hz), 7.05−7.00 (d, 1
S.P. acknowledges MIUR, Rome (FIRB-Futuro in Ricerca 2008
project RBFR08J78Q), for financial support. We thank Dr. V.
Dichiarante for her help.
REFERENCES
■
(1) Modern Arylation Methods; Ackermann, L., Ed.; Wiley-VCH
Verlag GmbH & Co: Weinheim, Germany, 2009.
(2) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.;
Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346−
1416.
́
(3) (a) Barluenga, J.; Florentino, L.; Aznar, F.; Valdes, C. Org. Lett.
2011, 13, 510−513. (b) Peng, A.-Y.; Chen, B.-T.; Wang, Z.; Wang, B.;
Mo, X.-B.; Wang, Y.-Y.; Chen, P.-J. J. Fluorine Chem. 2011, 132,
982−986.
(4) Limmert, M. E.; Roy, A. H.; Hartwig, J. F. J. Org. Chem. 2005, 70,
9364−9370.
(5) (a) Percec, V.; Golding, G. M.; Smidrkal, J.; Weichold, O. J. Org.
Chem. 2004, 69, 3447−3452. (b) Kobayashi, Y.; Mizojiri, R.
Tetrahedron Lett. 1996, 37, 8531−8534.
(6) Zhang, L.; Qing, J.; Yang, P.; Wu, J. Org. Lett. 2008, 10, 4971−
4974.
(7) Protti, S.; Fagnoni, M. Chem. Commun. 2008, 3611−3621.
(8) Chen, H.; Huang, Z.; Hu, X.; Tang, G.; Xu, P.; Zhao, Y.; Cheng,
C.-H. J. Org. Chem. 2011, 76, 2338−2344.
(9) Ebran, J.-P.; Hansen, A. L.; Gøgsig, T. M.; Skrydstrup, T. J. Am.
Chem. Soc. 2007, 129, 6931−6942.
(10) Ming, So, C.; Zhou, Z.; Po Lau, C.; Kwong, F. Angew. Chem., Int.
Ed. 2008, 47, 6402−6406.
(11) For selected references on the aryl cation chemistry, see:
(a) Dichiarante, V.; Fagnoni, M. Synlett 2008, 787−800. (b) Slegt, M.;
Hermen, S.; Overkleeft, H. S.; Lodder, G. Eur. J. Org. Chem. 2007,
5364−5375. (c) Penenory, A. B.; Arguello, J. E. In Handbook of
́
̃
̃
̈
Synthetic Photochemistry; Albini, A., Fagnoni, M., Eds.; Wiley-VCH:
Weinheim, Germany, 2010; pp 319−352. (d) Dichiarante, V.;
Fagnoni, M.; Albini, A. In Modern Arylation Methods; Ackermann, L.,
Ed.; Wiley-VCH Verlag GmbH & Co: Weinheim, Germany, 2009; pp
513−535.
(12) De Carolis, M.; Protti, S.; Fagnoni, M.; Albini, A. Angew. Chem.,
Int. Ed. 2005, 44, 1232−1236.
(13) (a) Grabner, G.; Richard, C.; Koehler, G. J. Am. Chem. Soc.
1994, 116, 11470−11480. (b) Manet, I.; Monti, S.; Fagnoni, M.;
Protti, S.; Albini, A. Chem.Eur. J. 2005, 11, 140−151. (c) Canevari,
V.; Fagnoni, M.; Bortolus, P.; Albini, A. ChemSusChem 2011, 4,
98−103.
(14) Terpolilli, M.; Merli, D.; Protti, S.; Dichiarante, V.; Fagnoni, M.;
Albini, A. Photochem. Photobiol. Sci. 2011, 10, 123−127.
(15) (a) Hori, K.; Sonoda, T.; Harada, M.; Yamazaki-Nishida, S.
Tetrahedron 2000, 56, 1429−1436. (b) Protti, S.; Fagnoni, M.; Albini,
A. J. Am. Chem. Soc. 2006, 128, 10670−10671. (c) Lazzaroni, S.; Protti,
S.; Fagnoni, M.; Albini, A. Org. Lett. 2009, 11, 349−352.
(d) Dichiarante, V.; Fagnoni, M.; Albini, A. Green Chem. 2009, 11,
942−945.
H, J = 2.7 Hz), 6.90−6.85 (dd, 1 H, J = 2.7 and 8.5 Hz), 6.05−5.90
(m, 1 H), 5.15−4.95 (m, 2 H), 3.80 (s, 3 H), 3.50 (d, 2 H, J = 5.56
Hz), 0.35 (s, 9 H); 13C NMR (CDCl3) δ 157.0, 139.8, 138.2 (CH),
137.3, 130.2 (CH), 120.3 (CH), 115.5 (CH2), 113.8 (CH), 55.0
(CH3), 39.1 (CH2), 0.1 (CH3); IR (neat) ν/cm−1 2953, 1478, 1247,
837. Anal. Calcd for C13H20OSi: C, 70.85; H, 9.15. Found: C, 70.9;
H, 9.1.
(16) (a) Stang, P. J. In Dicordinate Carbocations; Rappoport, Z.,
Stang, P. J., Eds.; Wiley: New York, 1997; p 461. (b) Hanack, M.;
Subramanian, L. R. In Methoden der Organischen Chemie; Hanck, M.,
Ed.; Thieme: Stuttgart, Germany, 1990; Vol. E19C, p 249.
(c) Himeshima, Y.; Kobayashi, H.; Sonoda, T. J. Am. Chem. Soc.
1985, 107, 5286−5288. (d) Hanack, M.; Rieth, R. Chem. Ber. 1987,
120, 1659−1666. (e) Slegt, M.; Overkleeft, H. S.; Lodder, G. Eur. J.
ASSOCIATED CONTENT
■
S
* Supporting Information
1H NMR and 13C NMR spectra for compounds 1a−d and 2−7.
This material is available free of charge via the Internet at
3506
dx.doi.org/10.1021/jo300290v | J. Org. Chem. 2012, 77, 3501−3507