N. Satoh et al. / Tetrahedron 65 (2009) 3239–3245
3245
4.11. (L)-Oseltamivir phosphate (1$H3PO4)
Compound 13: [
a
]
D
23 70.2 (c 1.09, CHCl3). 1H NMR (400 MHz, CDCl3):
d
7.33 (5H, m), 6.37 (2H, m), 5.11 (2H, m), 4.90 ((3/5)1H, br s), 4.84
A stirred mixture of 36 (566.2 mg, 1.428 mmol), 1,3-dime-
thylbarbituric acid (272.1 mg, 1.743 mmol), triphenylphosphine
(15.0 mg, 0.0571 mmol), and 5% Pd/C (E3, 50% wet, provided by
Degussa, 64.0 mg, 0.0143 mmol) in ethanol (11.3 ml) was heated at
80 ꢁC for an hour. The reaction mixture was then filtered and
concentrated under reduced pressure. To the solution of the crude
product in ethanol (5.80 ml) was added a 1.0 M solution of phos-
phoric acid in ethanol (1.70 ml, 1.70 mmol). The resulting solution
was warmed to 50 ꢁC and seed crystals of 1$H3PO4 were added to
initiate the crystallization. The mixture was slowly cooled to room
temperature and stirred overnight. The resulting suspension was
cooled to ꢀ18 ꢁC, stirred for an additional 3 h, filtered and washed
successively with acetone (seven times) and hexane (three times)
((2/5)1H, br s), 3.28 (2H, m), 3.18 (1H, m), 3.02 (1H, m), 2.73 (1H, m),
2.36 (1H, m), 1.76 (1H, m), 0.83 (1H, m). 13C NMR (100 MHz, CDCl3):
d
155.2, 154.8, 137.0, 136.9, 135.0, 134.6, 130.5, 130.0, 128.4, 128.4,
127.8, 127.7, 127.7, 127.7, 66.7, 66.7, 65.6, 65.5, 47.3, 47.2, 46.9, 46.8,
41.6, 41.6, 30.8, 30.6, 26.1, 26.1. IR (neat, cmꢀ1): 3429, 2935, 2873,
1695, 1419, 1344, 1300, 1113, 1053. HRMS Calcd for C6H19NO3:
23
274.1443 (MþHþ); Found: 274.1441. Compound 14: [
a
]
ꢀ141 (c
D
1.00, CHCl3). 1H NMR (400 MHz, CDCl3):
d 7.35 (5H, m), 5.99 (1H, dd,
J¼9.4, 5.2 Hz), 5.85 (1H, d, J¼4.4 Hz), 5.64 (1H, dd, J¼9.4, 5.6 Hz),
5.12 (2H, m), 4.98 (1H, br s), 4.06 (2H, s), 3.21 (1H, m), 3.12 (1H, m),
2.46 (1H, m), 2.31 (1H, m), 2.23 (2H, m). 13C NMR (100 MHz, CDCl3):
d
157.0, 137.1, 136.4, 128.5, 128.1, 128.1, 126.7, 125.5, 119.2, 66.8, 66.0,
42.9, 33.9, 26.6. IR (neat, cmꢀ1): 3334, 3033, 2925, 2864, 1699, 1537,
1454, 1259, 1140, 997. Anal. Calcd for C6H19NO3: C, 70.31; H, 7.01; N,
5.12. Found: C, 70.01; H, 6.90; N, 5.08.
to give 1$H3PO4 (445.1 mg, 1.085 mmol, 76.0%) as white crystals.
23
[
a]
ꢀ31.2 (c 1.00, H2O). Mp 184.0–186.2 ꢁC (ethanol). 1H NMR
D
(400 MHz, D2O):
d
6.83 (1H, d, J¼2.1 Hz), 4.32 (1H, m), 4.23 (2H, m),
4.04 (1H, m), 3.55 (2H, m), 2.95 (1H, m), 2.51 (1H, m), 2.07 (3H, s),
Acknowledgements
1.54 (4H, m), 1.45 (2H, m), 1.37 (1H, ddt, J¼14.0, 2.3, 1.6 Hz), 0.87
(3H, m), 0.82 (3H, m). 13C NMR (100 MHz, D2O):
d 175.2, 167.3, 137.8,
84.2, 75.0, 62.3, 52.5, 49.1, 28.1, 25.4, 25.0, 22.3, 13.2, 8.5, 8.4. 31P
NMR (162 MHz, D2O):
0.6. IR (KBr, cmꢀ1): 3352, 1718, 1660, 1552,
This work was financially supported in part by a Grant for the
21st Century COE Program and Grant-in-Aid (15109001 and
16073205) from the Ministry of Education, Culture, Sports, Science
and Technology of Japan. We are indebted to Dr. Kunisuke Izawa of
d
1375, 1296, 1246, 1128, 1066, 1028, 947. Anal. Calcd for
C16H31N2O8P: C, 46.83; H, 7.61; N, 6.83. Found: C, 46.55; H, 7.36; N,
6.86.
Ajinomoto Co., Inc., for an ample supply of D-phenylalanine.
4.12. (1S,4S,7S)-2-Benzyloxycarbonyl-7-hydroxymethyl-2-
azabicyclo[2,2,2]octan-7-ene (13) and benzyl 5-(5-
References and notes
(hydroxymethyl)cyclohexa-2,4-dienyl)methylcarbamate (14)
1. Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H.; Zhang, L.; Swaminathan, S.;
Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.; Laver, W. G.; Stevens, R. C.
J. Am. Chem. Soc. 1997, 119, 681.
To a stirred solution of pyridine (10) (5.00 g, 63.2 mmol) in
methanol (50 ml) was added sodium borohydride (2.63 g,
69.5 mmol) at ꢀ78 ꢁC. To this was added benzyl chloroformate
(10.24 g, 60.0 mmol) dropwise over a period of 90 min at such
a rate that inner temperature was maintained under ꢀ69 ꢁC. After
stirring for 100 min, water (50 ml) and diethyl ether (50 ml) were
added to the reaction mixture. The resulting mixture was warmed
to room temperature, and the organic layer was separated. The
aqueous layer was extracted with ether (50 ml), and the combined
organic extracts were washed with 1 N HCl (50 ml), 1 N NaOH
(50 ml), water (20 ml), and brine (20 ml), respectively, dried over
sodium sulfate, filtered, and concentrated under reduced pressure
to give the crude dihydropyridine 11 (9.84 g) as a pale yellow oil,
which was used for the next step without further purification. To
a stirred solution of 11 (3.00 g) in acetonitrile (14.2 ml) and water
(0.75 ml) were added the MacMillan’s catalyst 12 (0.36 g, 1.4 mmol)
and acrolein (2.8 ml, 42 mmol) at room temperature. After stirring
for 16 h, the reaction mixture was diluted with diethyl ether
(50 ml), and washed with water (50 ml). The aqueous layer was
extracted with diethyl ether (50 ml). The combined organic extracts
were washed with brine (50 ml), dried over sodium sulfate, filtered,
and concentrated under reduced pressure to give aldehyde 16
(7.77 g) as a pale yellow oil, which was used for the next step
without further purification. To a stirred solution of aldehyde 16
(5.00 g) in ethanol (25 ml) was added sodium borohydride (1.40 g,
37.0 mmol). After stirring for 30 min, the reaction was quenched
with aqueous HCl (100 ml). The reaction mixture was extracted
twice with ethyl acetate, and the combined organic extracts were
washed with brine, filtered, and concentrated under reduced
pressure to give the crude product (2.42 g). One gram of the crude
product was purified by silica gel column chromatography to give
13 (284 mg, 28.1% over three steps) as a colorless viscous oil and 14
(79 mg, 7.8% over three steps) as a white amorphous solid.
2. (a) Rohloff, J. C.; Kent, K. M.; Postich, M. J.; Becker, M. W.; Chapman, H. H.; Kelly,
D. E.; Lew, W.; Louie, M. S.; McGee, L. R.; Prisbe, E. J.; Schultze, L. M.; Yu, R. H.;
Zhang, L. J. Org. Chem. 1998, 63, 4545; (b) Federspiel, M.; Fischer, R.; Hennig, M.;
Mair, H.-J.; Oberhauser, T.; Rimmler, G.; Albiez, T.; Bruhin, J.; Estermann, H.;
Gandert, C.; Go¨ckel, V.; Go¨tzo¨, S.; Hoffmann, U.; Huber, G.; Janatsch, G.; Lauper,
S.; Ro¨ckel-Sta¨bler, O.; Trussardi, R.; Zwahlen, A. G. Org. Process Res. Dev. 1999, 3,
266; (c) Karpf, M.; Trussardi, R. J. Org. Chem. 2001, 66, 2044; (d) Harrington, P. J.;
Brown, J. D.; Foderaro, T.; Hughes, R. C. Org. Process Res. Dev. 2004, 8, 86; (e)
Yeung, Y.-Y.; Hong, S.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 6310; (f) Fukuta, Y.;
Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 6312; (g)
Cong, X.; Yao, Z.-J. J. Org. Chem. 2006, 71, 5365; (h) Farina, V.; Brown, J. D. Angew.
Chem., Int. Ed. 2006, 45, 7330; (i) Mita, T.; Fukuda, N.; Roca, F. X.; Kanai, M.;
Shibasaki, M. Org. Lett. 2007, 9, 259; (j) Yamatsugu, K.; Kamijo, S.; Suto, Y.; Kanai,
M.; Shibasaki, M. Tetrahedron Lett. 2007, 48, 1403; (k) Bromfield, K. M.; Graden,
H.; Hagberg, D. P.; Olsson, T.; Kann, N. Chem. Commun. 2007, 3183; (l) Shie, J.-J.;
Fang, J.-M.; Wang, S.-Y.; Tsai, K.-C.; Cheng, Y.-S. E.; Yang, A.-S.; Hsiao, S.-C.; Su, C.-
Y.; Wong, C.-H. J. Am. Chem. Soc. 2007, 129, 11892; (m) Trost, B. M.; Zhang, T.
Angew. Chem., Int. Ed. 2008, 47, 3759; (n) Zutter, U.; Iding, H.; Spurr, P.; Wirz, B.
J. Org. Chem. 2008, 73, 4895; (o) Shie, J.-J.; Fang, J.-M.; Wong, C.-H. Angew. Chem.,
Int. Ed. 2008, 47, 5788; (p) Shibasaki, M.; Kanai, M. Eur. J. Org. Chem. 2008, 1839.
3. Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T. Angew. Chem., Int. Ed. 2007, 46,
5734.
4. Examples for asymmetric Diels–Alder reactions using dihydropyridine. Enan-
tioselective Diels–Alder reactions: (a) Takenaka, N.; Huang, Y.; Rawal, V. H.
Tetrahedron 2002, 58, 8299; (b) Nakano, H.; Tsugawa, N.; Fujita, R. Tetrahedron
Lett. 2005, 46, 5677. Diastereoselective reactions using chiral dihydropyridines:
(c) Mehmandoust, M.; Mrazano, C.; Singh, R.; Gillet, B.; Cesario, M.; Fourrey, J.-L.;
Das, B. C. Tetrahedron Lett. 1988, 29, 4423; (d) Marazano, C.; Yannic, S.; Genisson,
Y.; Mehmandoust, M.; Das, B. C. Tetrahedron Lett. 1990, 31, 1995; (e) Matsumura,
Y.; Nakamura, Y.; Maki, T.; Onomura, O. Tetrahedron Lett. 2000, 41, 7685 Dia-
stereoselective Diels–Alder reactions using chiral acrylic acid derivatives: (f)
Kouklovsky, C.; Pouilhe´s, A.; Langlois, Y. J. Am. Chem. Soc. 1990, 112, 6672; (g)
Campbell, M. M.; Sainsbury, M.; Searle, P. A. Tetrahedron Lett. 1992, 33, 3181.
5. (a) Fowler, F. W. J. Org. Chem. 1972, 37, 1321; (b) Sundberg, R. J.; Bloom, J. D. J. Org.
Chem. 1981, 46, 4836.
6. (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122,
4243; (b) Lelais, G.; MacMillan, D. W. C. Aldrichimica Acta 2006, 39, 79.
7. (a) Lindgren, B. O.; Nilsson, T. Acta Chem. Scand. 1973, 27, 888; (b) Kraus, G. A.;
Taschner, M. J. J. Org. Chem. 1980, 45, 1175.
8. Sakaitani, M.; Hori, K.; Ohfune, Y. Tetrahedron Lett. 1988, 29, 2983.
9. Moriarty, R. M.; Chany, C. J., II; Vaid, R. K.; Prakash, O.; Tuladhar, S. M. J. Org.
Chem. 1993, 58, 2478.