9198
N. Palyam et al. / Tetrahedron Letters 48 (2007) 9195–9198
11. Selected papers: (a) Tanaka, F.; Barbas, C. F., III. In
Enantioselective Organocatalysis; Dalko, I. P., Ed.; Wiley-
VCH: Weinheim, 2007, Chapter 2; (b) Enders, D.;
Vrettou, M. Synthesis 2006, 2155; (c) Enders, D.; Chow,
S. Eur. J. Org. Chem. 2006, 4578; (d) Grondal, C.; Enders,
D. Synlett 2006, 3507; (e) Enders, D.; Grondal, C. Angew.
Chem., Int. Ed. 2005, 44, 1210; (f) Grondal, C.; Enders, D.
Tetrahedron 2006, 62, 329; (g) Enders, D.; Gasperi, T.
Chem. Commun. 2007, 88; (h) Grondal, C.; Enders, D.
Adv. Synth. Catal. 2007, 349, 694; (i) Casas, J.; Engqvist,
M.; Ibrahem, I.; Kaynak, B.; Cordova, A. Angew. Chem.,
Int. Ed. 2005, 117, 1367; (j) Ibrahem, I.; Zou, W.; Xu, Y.;
Cordova, A. Adv. Synth. Catal. 2006, 348, 211; (k)
Ibrahem, I.; Cordova, A. Tetrahedron Lett. 2005, 46,
3363; (l) Suri, J. T.; Mitsumori, S.; Alberthofer, K.;
Tanaka, F.; Barbas, C. F., III. J. Org. Chem. 2006, 71,
3822.
Further investigations to expand the scope of this meth-
odology to the synthesis of sialic acids and other higher
sugar derivatives are ongoing and will be reported in due
course.
Acknowledgements
The authors thank NSERC Canada and the University
of Saskatchewan for financial support and Saskatche-
wan Structural Sciences Centre for help in analytical
measurements. We thank Dr. J. Wilson Quail for solv-
ing the crystal structure of compound 7b.
References and notes
12. Majewski, M.; Nowak, P. J. Org. Chem. 2000, 65, 5152.
13. Evans, D. A.; Cee, V. J.; Siska, S. J. J. Am. Chem. Soc.
2006, 128, 9433.
14. Haustveit, G.; Wold, K. J. Acta Chem. Scand. 1970, 24,
3059.
1. (a) Levy, D. E.; Fugedi, P. The Organic Chemistry of
Sugars; CRC Press: Boca Raton, 2006; (b) Secrist, J. A.,
III; Barnes, K. D.; Wu, S. R. In Trends in Synthetic
Carbohydrate Chemistry; Horton, D.; McGarvey, G. J.,
Eds.; ACS Symp. Ser.; American Chemical Society—ACS:
Washington, 1989; Vol. 386, Chapter 5.
2. For reviews on higher monosaccharides see: (a) Danishef-
sky, S. J.; DeNinno, M. P. Angew. Chem., Int. Ed. Engl.
1987, 26, 15; (b) Jarosz, S. J. Carbohydr. Chem. 2001, 20,
93; (c) Brimacombe, J. S. In Studies in Natural Products
Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam,
1989; Vol. 4, pp 157–193; (d) Zamojski, A.; Jarosz, S.
Polym. J. Chem. 1992, 66, 525; (e) Casiraghi, G.; Rassu,
G.. In Studies in Natural Products Chemistry; Atta-ur-
Rahman, Ed.; Elsevier: Amsterdam, 1992; Vol. 11, pp
429–480.
3. (a) Vuilhorgne, M.; Ennifar, S.; Das, B. C.; Paschal, J. W.;
Nagarajan, R.; Hagaman, E. W.; Wenkert, E. J. Org.
Chem. 1977, 42, 3289; (b) Uchida, K.; Wolf, H. J. Antibiot.
1974, 27, 783; (c) Fuerstner, A.; Wuchrer, M. Chem. Eur.
J. 2006, 12, 76.
4. Structure Activity Relationships Among the Semisynthetic
Antibiotics; Magerlein, B. J., Pearlman, D., Eds.; Aca-
demic Press: New York, 1977; p 601.
5. (a) Hemeon, I.; Bennet, A. J. Synthesis 2007, 13, 1899; (b)
Angata, T.; Varki, A. Chem. Rev. 2002, 102, 439; (c)
Kiefel, M. J.; Itzstein, V. M. Chem. Rev. 2002, 102, 471.
6. (a) Barker, S. A.; Fish, F. P.; Prchal, J. J. Biochem.
Biophys. Res. Commun. 1983, 116, 988; (b) Lonngren, J.
Pure Appl. Chem. 1989, 61, 1313; (c) Dwek, R. A. Chem.
Rev. 1996, 96, 683.
7. (a) Brimacombe, J. S.; Kabir, A. K. Carbohydr. Res. 1986,
152, 335; (b) Ohlsson, J. Carbohydr. Res. 2002, 331, 91; (c)
Marshall, J. A.; Beaudoin, S. J. Org. Chem. 1994, 59,
6614; (d) Jorgensen, M.; Iversen, E. H.; Madsen, R. J.
Org. Chem. 2001, 66, 4625.
8. (a) Jarosz, S.; Skora, S.; Kosciolowska, I. Carbohydr. Res.
2003, 7, 13; (b) Dondoni, A.; Merino, P. Org. Synth. 1993,
72, 21; (c) Vogel, P. In The Organic Chemistry of Sugars;
Levy, D. E., Fugedi, P., Eds.; Taylor and Francis: Boca
Raton, 2006; pp 645–647.
15. Majewski, M.; Niewczas, I.; Palyam, N. Synlett 2006,
2387.
16. Corey, E. J.; Erickson, B. W. J. Org. Chem. 1971, 36, 3553.
17. At this stage, we could only assign stereochemistry by
analogy to previously synthesized compounds and by
analysis of NMR coupling constants. The absolute
stereochemistry of compounds 10 and 11 is believed to
be as drawn based on the following: (i) aldol addition of
dioxanones to aldehydes under organocatalytic conditions
is well known to give anti aldols with high selectivity;11,15
(ii) aldol addition of dioxanone enolates proceeds via
equatorial attack,12 and (iii) addition of dioxanone nucleo-
philes to chiral aldehydes having a stereocentre at the a-
carbon does not follow the Felkin-Anh model and results
in the OH group at the new carbinol stereocentre being
syn to the a-alkoxy group derived from the aldehyde.12
Further details will be reported in the full paper.
18. Compound 14: Sodium acetate (0.058 g, 0.70 mmol) and
acetic anhydride (3 mL) were added to the crude com-
pound 13 (25 mg, 0.06 mmol). The resulting mixture was
heated to 90 ꢁC for 2 h and the reaction was quenched
with ice and with saturated NaHCO3 solution. The
mixture was then extracted with AcOEt (3 · 20 mL)
and the combined organic layers were washed with brine.
The organic phase was dried over anhydrous Na2SO4
and concentrated. The crude product was purified by
flash column chromatography (SiO2; 30% AcOEt in
hexane), which afforded the cyclized product 14 (24 mg,
25
65%). ½aꢁD +44.6 (c 1, CHCl3) 1H NMR (CDCl3,
500 MHz): d 7.35–7.19 (m, 10H), 5.43 (d, 1H, J 3.2 Hz),
5.35 (dd, 1H, J1 3.2 Hz, J1 9.9 Hz), 4.77 (dd, 2H, J1
12.1 Hz, J2 12.0 Hz), 4.65 (dd, 3H, J1 10.1 Hz, J2 11.0 Hz),
4.42 (d, 1H, J 12.1 Hz), 4.26 (dd, 1H, J1 8.2 Hz, J2 8.1 Hz),
4.18 (dd, 1H, J1 4.1 Hz, J2 4.0 Hz), 4.1 (t, 1H, J 9.9 Hz),
3.95 (dd, 1H, J1 0.92 Hz, J2 4.0 Hz), 3.82 (dd, 1H, J1
0.92 Hz, J2 9.9 Hz), 2.12 (s, 3H), 2.10 (s, 3H), 2.00 (s, 3H),
1.99 (s, 3H), 1.92 (s, 3H). 13C NMR (CDCl3, 125 MHz): d
170.9, 170.2, 170.0, 169.6, 168.0, 138.5, 137.7, 128.7–127.9
(8 CH), 103.99, 77.96, 75.2, 74.8, 73.4, 72.5, 72.3, 67.5,
64.8, 60.6, 22.0, 21.1, 20.95, 20.87, 20.79. HRMS (CI,
9. Enders, D.; Matthias, V.; Lenzen, A. Angew. Chem., Int.
Ed. 2005, 44, 1304.
10. Selected papers: (a) Majewski, M.; Nowak, P. Synlett
1999, 1447; (b) Job, A.; Janec, C. F.; Bettray, W.; Peters,
R.; Enders, D. Tetrahedron 2002, 58, 2253; (c) Enders, D.;
Ince, S. J. Synthesis 2002, 619; (d) Enders, D.; Peiffer, E.;
Raabe, G. Synthesis 2007, 1021; (e) Ortiz, J. C.; Ozores,
L.; Cagide-Fagin, F.; Alonso, R. Chem. Commun. 2006,
4239.
NH3) exact mass calcd for ½Mꢁþ ðC32H38O13 þ NHþÞ
4
required: 648.2656, found: m/z 648.2641. MS (CI, NH3):
m/z (%) = 648 (100) [M+NHþ4 ], 588 (12), 571 (71), 359 (9),
240 (6), 108 (32), 91 (22), 77 (24). IR (Kubelka-Munk):
1751 (s), 1493 (w), 1451 (m) cmꢀ1
.