M. Hellal et al. / Tetrahedron Letters 49 (2008) 62–65
65
Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39,
2285; (d) Kel’in, A. V.; Sromeck, A. W.; Gevorgyan, V. J.
Am. Chem. Soc. 2001, 123, 2074; (e) Kel’in, A. V.;
Gevorgyan, V. J. Org. Chem. 2002, 67, 95; (f) Asao, N.;
Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J.
Am. Chem. Soc. 2002, 124, 12650; (g) Dyker, G.; Hilde-
brandt, D.; Liu, J.; Merz, K. Angew. Chem., Int. Ed. 2003,
42, 4399; (h) Asao, N.; Kasahara, T.; Yamamoto, Y.
Angew. Chem., Int. Ed. 2003, 42, 3504; (i) Asao, N.;
Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc.
2003, 125, 10921; (j) Zhu, J.; Germain, A. R.; Porco, J. A.,
Jr. Angew. Chem., Int. Ed. 2004, 43, 1239; (k) Patil, N. T.;
Wu, H.; Yamamoto, Y. J. Org. Chem. 2005, 70, 4531; (l)
Subramanian, S.; Rao Batchu, V.; Barange, D.; Pal, M. J.
Org. Chem. 2005, 70, 4778; (m) Dyker, G.; Hildebrandt,
D. J. Org. Chem. 2005, 70, 6093; (n) Cherry, K.; Parrain,
J.-L.; Thibonnet, J.; Ducheˆne, A.; Abarbri, M. J. Org.
Chem. 2005, 70, 6669; (o) Woon, E. C. Y.; Dhami, A.;
Mahon, M. F.; Threadgill, M. D. Tetrahedron 2006, 62,
4829; (p) Genin, E.; Toullec, P. Y.; Antoniotti, S.;
Brancour, C.; Geneˆt, J.-P.; Michelet, V. J. Am. Chem.
Soc. 2006, 128, 3112; (q) Dyker, G.; Hildebrandt, D. J.
Org. Chem. 2006, 71, 6728; (r) Ho Oh, C.; Jik Yi, H.; Ho
Lee, J. New J. Chem. 2007, 31, 835; (s) Marchal, E.; Uriac,
P.; Legouin, B.; Toupet, L.; van de Wegener, P. Tetrahe-
dron 2007, 63, 9979.
6. All the reactions were performed with a self-tuneable
microwave synthesizer (Biotage Initiator EXP microwave
apparatus). The instrument continuously adjusted the
applied wattage to maintain the desired temperature.
7. Yao, T.; Larock, R. C. J. Org. Chem. 2003, 68, 5936.
8. Sibi, M. P.; Cook, G. R.. In Lewis Acids in Organic
Synthesis; Yamamoto, H., Ed.; Wiley-VCH: Weinheim,
Germany, 2000; Vol. 2, p 543.
9. 7-Phenyl-5H-pyrano[4,3-b]pyridin-5-one (4): To a solution
of 3 (0.2 mmol) in trifluoroacetic acid (1 mL) was added
Cu(OTf)2 (5 mol %). The solution was irradiated with
microwaves at 100 ꢁC for 20 min. Trifluoroacetic acid was
evaporated under reduced pressure. The residue was
partitioned between CH2Cl2 (10 mL) and water (10 mL).
The organic layer was further washed with brine
(2 · 20 mL), dried (Na2SO4), and concentrated in vacuo.
Purification by chromatography on silica gel R (elution
gradient: EtOAc–heptane 3–7 to 1–1) yielded 4 as a white
1
powder in 92% yield. H NMR (CDCl3, 300 MHz) d 8.91
(dd, 1H, J = 1.3, 4.7 Hz), 8.52 (dd, 1H, J = 1.3, 8.1 Hz),
7.93–7.86 (m, 2H), 7.50–7.45 (m, 3H), 7.40 (dd, 1H,
J = 4.7, 8.1 Hz), 7.20 (s, 1H). 13C NMR (CDCl3, 75 MHz)
d 162.2, 157.4, 156.6, 153.3, 137.8, 131.6, 131.1, 129.3,
125.9, 123.2, 117.2, 104.0. IR (neat, cmÀ1): 3067, 2923,
2853, 2330, 1734, 1633, 1561, 1439, 1280, 1215, 1110, 1079,
774, 752, 688, 530. Mp = 136–137 ꢁC. ESI-HRMS calcd
C14H10NO2 [M+H]+ 224.0706, found 224.0694.
3. Uchiyama, M.; Ozawa, H.; Takuma, K.; Matsumoto, Y.;
Yonehara, M.; Hiroya, K.; Sakamoto, T. Org. Lett. 2006,
8, 5517.
10. (a) Yanagisawa, A. In Lewis Acids in Organic Synthesis;
Yamamoto, H., Ed.; Wiley-VCH: Weinheim, Germany,
2000; Vol. 2, p 575. For reviews of the gold(III)-mediated
activation of alkynes, see: (b) Hashmi, A. S. K.; Hutch-
ings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896;
4. Reaction mixture was analyzed by 1H NMR spectroscopy.
5. Electrophilic cyclization using aqueous sulfuric acid or
polyphosphoric acid was reported to give lactone 4 in
modest yields. See: (a) Sakamoto, T.; An-Naka, M.;
Kondo, Y.; Araki, T.; Yamanaka, H. Chem. Pharm. Bull.
1988, 36, 1890; (b) Sakamoto, T.; Nishiwaki, N.; Koma-
tsu, M.; Ohshiro, Y. Synthesis 1991, 41; (c) Epsztajn, J.;
Plotka, M. W.; Scianowski, J. Synth. Commun. 1992, 22,
1239.
Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed.
¨
2007, 46, 3410. For the Ag(I)-mediated activation of
alkynes, see: (c) Godet, T.; Vaxelaire, C.; Michel, C.;
Milet, A.; Belmont, P. Chem. Eur. J. 2007, 13, 5632.
11. For a review, see: Chinchilla, R.; Najera, C. Chem. Rev.
2007, 107, 874.