Journal of the American Chemical Society
Page 4 of 5
Soc. 2006, 128, 13076. (e) Markle, T. F.; Mayer, J. M. Angew. Chem. Int.
Ed. 2008, 47, 738.
(5) (a) Maki, T.; Araki, Y.; Ishida, Y.; Onomura, O.; Matsumura, Y. J.
Am. Chem. Soc. 2001, 123, 3371. (b) Rhile, I. J., Markle, T. F., Nagao, H.,
DiPasquale, A. G., Lam, O. P., Lockwood, M. A., Rotter, K., Mayer, J. M.
J. Am. Chem. Soc. 2006, 128, 6075.
by the phosphate base followed by fast oxidation of the result-
1
2
3
4
5
6
7
8
ing anilide anion. However, the large pKa difference between
the amide and the phosphate (ΔpKa ~ 20) suggests that the
latter pathway would not be kinetically competitive with lumi-
nescent decay of the Ir excited state (τ = 2.3 µs in MeCN at
rt).14 As the feasibility of both sequential transfer mechanisms
can be discounted, the measured rate law and isotope effect
are consistent with a concerted PCET mechanism of amidyl
formation.18
(6) (a) C. J. Fecenko, T. J. Meyer and H. Thorp, J. Am. Chem. Soc.,
2006, 128, 11020. (b) C. J. Fecenko, H. Thorp and T. J. Meyer, J. Am.
Chem. Soc., 2007, 129, 15098. (c) Schrauben, J. N.; Cattaneo, M.; Day, T.
C.; Tenderholt, A. L.; Mayer, J. M. J. Am. Chem. Soc. 2012, 134, 16635.
(d) Pizano, A. A.; Nocera, D. G.; Yang, J. L. Chem. Sci. 2012 3, 2457.
(7) (a) Hegedus, L. S.; Allen, G. F.; Olsen, D. J. J. Am. Chem. Soc.
1980, 102, 3583. (b) Ney, J. E.; Wolfe, J. P. Angew. Chem. Int. Ed. Engl.
2004, 43, 3605. (c) Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2005, 127,
8644. (d) Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E. J.
Am. Chem. Soc. 2009, 131, 9488. (e) Zeng, W.; Chemler, S. R. J. Am.
Chem. Soc. 2007, 129, 12948. (f) Liwosz, T. W.; Chemler, S. R. J. Am.
Chem. Soc. 2012, 134, 2020. (g) Scarborough, C. C.; Stahl, S. S. Org.
Lett. 2006, 8, 3251. (h) Yip, K.-T.; Yang, M.; Law, K.-L.; Zhu, N.-Y.;
Yang, D. J. Am. Chem. Soc. 2006, 128, 3130.
(8) (a) Fallis, A. G.; Brinza, I. M. Tetrahedron 1997, 53, 17543. (b)
Zard, S. Z. Synlett 1996, 1148. (c) Kemper, J.; Studer, A. Angew. Chem.
Int. Ed. Engl. 2005, 44, 4914. (d) Guin, J.; Fröhlich, R.; Studer, A. Angew.
Chem. Int. Edit. 2008, 47, 779. (e) Gagosz, F.; Moutrille, C.; Zard, S. Z.
Org. Lett. 2002, 4, 2707. (f) Lin, X.; Stien, D.; Weinreb, S. M. Tetrahe-
dron Lett. 2000, 41, 2333. (g) Esker, J. L.; Newcomb, M. Tetrahedron
Lett. 1993, 34, 6877 (h) Esker, J. L.; Newcomb, M. J. Org. Chem. 1993,
58, 4933. (i) Chen, K.; Richter, J. M.; Baran, P. S. J. Am. Chem. Soc.
2008, 130, 7247.
(9) (a) Nicolaou, K. C.; Baran, P. S.; Zhong, Y. L.; Barluenga, S.; Hunt,
K. W.; Kranich, R.; Vega, J. A. J Am Chem Soc 2002, 124, 2233. (b)
Hernandez, R.; Medina, M. C.; Salazar, J. A.; Suarez, E. Tetrahedron Lett.
1987, 28, 2533 (c) Freire, R.; Martın, A.; Perez-Martın, I.; Suarez, E.
Tetrahedron Lett. 2002, 43, 5113. (d) Janza, B.; Studer, A. J. Org. Chem.
2005, 70, 6991.
(10) Li recently reported a catalytic alkene aminofluorination wherein
amidyls are generated from anilides via oxidation with a Ag(III) fluoride
complex: Li, Z.; Song, L.; Li, C. J. Am. Chem. Soc. 2013, 135, 4640.
(11) (a) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Chem. Rev. 2010,
110, 6961. (b) Waidmann, C. R.; Miller, A. J.; Ng, C. W. A.; Scheuer-
mann, M. L.; Porter, T. R.; Tronic, T. A.; Mayer, J. M. Energy Environ.
Sci. 2012, 5, 7771. (c) Tarantino, K. T.; Liu, P.; Knowles, R. R. J. Am.
Chem. Soc. 2013, 135, 10022. (d) Yayla, H.; Knowles, R. R. Synlett 2014,
25, 2819. (e) Nomrowski, J.; Wenger, O. S. Inorg. Chem. 2015, 54, 3680.
(12) Cheng, J. P.; Zhao, Y. Y. Tetrahedron 1993, 49, 5267.
9
In conclusion, we have developed a novel PCET-based pro-
tocol for alkene carboamination. Notably, these studies
demonstrate that concerted multisite PCET is a viable mecha-
nism for the direct homolytic activation of strong N-H bonds,
providing catalytic access to amidyl radical intermediates from
simple anilide starting materials. Differential H-bonding abil-
ity enables these PCET activations to be completely chemose-
lective for the N-H bond even when much weaker allylic C-H
bonds are present in the same substrates. Additionally, the
qualitative success of effective BDFEs in enabling catalyst
selection suggests this simple metric will become an enabling
tool in PCET reaction design.19 These results provide further
support for the view that concerted PCET mechanisms can be
successfully translated to small molecule catalysis platforms
and enable the development of new synthetic methods.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
Experimental procedures and characterization data. This material
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
Financial support was provided by Princeton University and the
NIH (R01 GM113105). R.R.K is a fellow of the A. P. Sloan
Foundation.
(13) See Supporting Information for potential and pKa data used in ef-
fective bond strength calculations. From reference 11a, the Csolv constant
term for MeCN used in these calculations is 54.9 kcal/mol.
(14) Hanss, D.; Freys, J. C.; Bernardinelli, G. R.; Wenger, O. S. Eur. J.
Inorg. Chem. 2009, 4850.
(15) See Supporting Information for voltammetric data.
(16) Stern Volmer experiments were carried out in MeCN to allow
comparisons to literature potential, lifetime and pKa data. Carboamination
of 1 under standard conditions in MeCN are effective and provide 2 in
42% yield.
REFERENCES
(1) (a) Evans, M. G.; Polanyi, M. Trans. Faraday Soc. 1938, 34, 11.
(b) Kochi, J. K., Ed., Free Radicals; Wiley: New York, 1973. (c) Roth, J.
P.; Yoder, J. C.; Won, T. J.; Mayer, J. M. Science 2001, 294, 2524. (c)
Mayer, J. M. Acc. Chem. Res. 2011, 44, 36.
(17) For examples and theoretical justification of small isotope effects
in multisite PCET reactions, see: (a) Warren, J. J.; Menzeleev, A. R.;
Kretchmer, J. S.; Miller, T. F., III; Gray, H. B.; Mayer, J. M. J. Phys.
Chem. Lett. 2013, 4, 519. (b) Warren, J. J.; Mayer, J. M. J. Am. Chem.
Soc. 2011, 133, 8544. (c) reference 6c (d) Hammes-Schiffer, S.; Sou-
dackov, A. V. J. Phys. Chem. B 2008, 112, 14108. (e) Megiatto, J. D.;
Méndez-Hernández, D. D.; Tejeda-Ferrari, M. E.; Teillout, A.-L.; Llanso-
la-Portolés, M. J.; Kodis, G.; Poluektov, O. G.; Rajh, T.; Mujica, V.;
Groy, T. L.; Gust, D.; Moore, T. A.; Moore, A. L. Nature Chem. 2014, 6,
423. (f) Edwards, S. J.; Soudackov, A. V.; Hammes-Schiffer, S. J. Phys.
Chem. A 2009, 113, 2117.
(18) For examples of concerted PCET with excited state redox partners:
(a) Wenger, O. S. Acc. Chem. Res. 2013, 46, 1517. (b) Gagliardi, C. J.;
Westlake, B. C.; Kent, C. A.; Paul, J. J.; Papanikolas, J. M.; Meyer, T. J.
Coord. Chem. Rev. 2010, 254, 2459.
(19) As pointed out by a reviewer, the thermochemical considerations
reflected in the effective BDFE formalism are best viewed as a necessary
but not a sufficient condition to ensure a given PCET activation.
(2) Luo, Y. R. Handbook of Bond Dissociation Energies in Organic
Compounds; CRC Press: Boca Raton, Fl, 2003.
(3) (a) Reece, S. Y.; Nocera, D. G. Annu. Rev. Biochem. 2009, 78, 673.
(b) Mayer, J. M. Annu. Rev. Phys. Chem. 2004, 55, 363. (c) Hammes-
Schiffer, S.; Stuchebrukhov, A. A. Chem. Rev. 2010, 110, 6939. (d) Wein-
berg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.;
Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.; Meyer, T. J.
Chem. Rev. 2012, 112, 4016.
(4) For discussions of the role of H-bonding in concerted PCET, see:
(a) Turro, C.; Chang, C. K.; Leroi, G. E.; Cukier, R. I.; Nocera, D. G. J.
Am. Chem. Soc. 1992, 114, 4013. (b) Kirby, J.; Roberts, J.; Nocera, D. G.
Significant Effect of Salt Bridges on Electron Transfer. J. Am. Chem. Soc.
1997, 119, 9230. (c) Young, E. R.; Rosenthal, J.; Hodgkiss, J. M.; Nocera,
D. G. J. Am. Chem. Soc 2009, 131, 7678. (d) Sjodin, M.; Irebo, T.; Utas, J.
E.; Lind, J.; Merenyi, G.; Akermark, B.; Hammarstrom, L. J. Am. Chem.
4
ACS Paragon Plus Environment