268
T. Imahori et al. / Tetrahedron Letters 49 (2008) 265–268
5214; (c) Asano, N.; Ikeda, K.; Yu, L.; Kato, A.; Takebayashi, K.;
Diver, S. T. J. Am. Chem. Soc. 2005, 127, 5762–5763; (b) Kinoshita,
T.; Sato, Y.; Mori, M. Adv. Synth. Catal. 2002, 344, 678–693.
19. An interesting acceleration effect of phenol as an additive for olefin
metathesis has been reported. See: Forman, G. S.; McConnell, A. E.;
Tooze, R. P.; Janse van Rensburg, W.; Meyer, W. H.; Kirk, M. M.;
Dwyer, C. L.; Serfontein, D. W. Organometallics 2005, 24, 4528–4542.
In the present enyne metathesis, the allylic hydroxy group might act in
the same way as phenol.
Adachi, I.; Kato, I.; Ouchi, H.; Takahata, H.; Feet, G. W. J.
Tetrahedron: Asymmetry 2005, 16, 223–229; (d) Kato, A.; Kato, N.;
Kano, E.; Adachi, I.; Ikeda, K.; Yu, L.; Okamoto, T.; Banba, Y.;
Ouchi, H.; Takahata, H.; Asano, N. J. Med. Chem. 2005, 48,
2036–2044; (e) Takahata, H.; Banba, Y.; Ouchi, H.; Nemoto, H. Org.
Lett. 2003, 5, 2527–2529; (f) Takahata, H.; Banba, Y.; Ouchi, H.;
Nemoto, H.; Kato, A.; Adachi, I. J. Org. Chem. 2003, 68, 3603–
3607.
20. General procedure for allylic hydroxy group accelerated ring-closing
enyne metathesis: To a solution of an enyne substrate containing an
allylic hydroxy group in CH2Cl2 was added 4, 8 or 12 mol % of
Grubbs’ 1st generation catalyst at rt under Ar atmosphere. The
concentration of Grubbs’ 1st generation catalyst was kept at 0.002 M.
The mixture was stirred for the indicated reaction time. Then the
reaction mixture was concentrated in vacuo and the residue was
purified with silica gel column chromatography to obtain cyclic 1,3-
dienes. Spectroscopic data for representative examples: Compound
12. Zhu, X. Z.; Sheth, K. A.; Li, S.; Chang, H.-H.; Fan, J.-Q. Angew.
Chem., Int. Ed. 2005, 44, 7450–7453.
13. This anti-selectivity would be induced by steric repulsion of TBDPSO
group in the hydroboration step.
14. The use of AD-mix-aÒ would induce slight kinetic resolution of 3 and
27
½aꢀD ꢁ1.8 (c 1.43, CHCl3) was indicated for the final product 6.
27
Compound 6: ½aꢀD ꢁ1.8 (c 1.43, CHCl3); 1H NMR (600 MHz, D2O) d
(ppm): 1.61–1.68 (m, 1H), 2.33–2.38 (m, 2H), 3.05 (dd, J = 13.0,
3.5 Hz, 1H), 3.10 (dd, J = 12.1, 4.8 Hz, 1H), 3.27 (t, J = 9.9 Hz, 1H),
3.43–3.48 (m, 1H), 3.59 (dd, J = 11.4, 7.0 Hz, 1H), 3.78 (dd, J = 11.4,
3.3 Hz, 1H); 13C NMR (100 MHz, D2O/CH3CN) d (ppm): 43.9, 45.7,
48.8, 59.8, 71.4, 73.1; EI-Ms (m/z): 147 (M+); HRMS: calcd for
C6H13NO3: 147.0895, found: 147.0845.
1
2b: H NMR (600 MHz, CDCl3/TMS) d (ppm): 1.48 (s, 9H), 2.23 (s,
2H), 3.55 (br s, 2H), 3.95 (d, J = 17.6 Hz, 1H), 4.10–4.26 (m, 2H),
5.12 (d, J = 11.0 Hz, 1H), 5.22–5.25 (m, 1H), 5.87 (br s, 1H), 6.30 (dd,
J = 17.6, 11.0 Hz, 1H); 13C NMR (67.5 MHz, C6D6, 60 °C) d (ppm):
28.5, 43.0, 48.2, 64.2, 79.8, 113.1, 130.3, 135.7, 136.7, 155.1; IR (neat):
15. Other examples of isofagomine syntheses, see: (a) Ouchi, H.; Mihara,
Y.; Watanabe, H.; Takahata, H. Tetrahedron Lett. 2004, 45, 7053–
7056; (b) Banfi, L.; Guanti, G.; Paravidino, M.; Riva, R. Org. Biomol.
Chem. 2005, 3, 1729–1737.
16. A similar acceleration effect of an allylic hydroxy group has been
observed in olefin metathesis with Grubbs’ 1st generation catalyst,
though details are not clear. See: (a) Hoye, T. R.; Zhao, H. Org. Lett.
1999, 1, 1123–1125; (b) Schmidt, B.; Nave, S. Adv. Synth. Catal. 2007,
349, 215–230; (c) Kanada, R. M.; Itoh, D.; Nagai, M.; Niijima, J.;
Asai, N.; Mizui, Y.; Abe, S.; Kotake, Y. Angew. Chem., Int. Ed. 2007,
46, 4350–4355.
17. Effects of a hydroxy group at other positions in Ru-carbene catalyzed
enyne metathesis, see: (a) Mori, M.; Tonogaki, K.; Nishiguchi, N. J.
Org. Chem. 2002, 67, 224–226; (b) Smulik, J. A.; Diver, S. T. Org.
Lett. 2000, 2, 2271–2274.
18. Effects of other substituents on the rate of Ru-carbene catalyzed
enyne metathesis, see: (a) Galan, B. R.; Giessert, A. J.; Keister, J. B.;
1683, 3406 cmꢁ1 EI-Ms (m/z): 225 (M+); HRMS: calcd for
;
C12H19NO3: 225.1365, found: 225.1370. Compound 2f: 1H NMR
(400 MHz, CDCl3) d (ppm): 1.56–1.64 (m, 2H), 1.71 (br s, 1H), 1.79–
1.90 (m, 2H), 2.11–2.15 (m, 2H), 4.29 (br s, 1H), 5.04 (d, J = 10.7 Hz,
1H), 5.20 (d, J = 17.6 Hz, 1H), 5.75 (br s, 1H), 6.34 (dd, J = 17.6,
10.7 Hz, 1H); 13C NMR (100 MHz, CDCl3) d (ppm): 18.8, 23.7, 32.0,
66.2, 112.9, 130.8, 138.6, 139.2; IR (neat): 909, 991, 1049, 1607, 2863,
2935, 3308 cmꢁ1; EI-Ms (m/z): 124 (M+); HRMS: calcd for C8H12O:
124.0888, found: 124.0889. Compound 2h: 1H NMR (400 MHz,
CDCl3) d (ppm): 1.42 (s, 9H), 1.46 (s, 9H), 2.20–2.28 (m, 2H), 2.53 (d,
J = 16.9 Hz, 1H), 2.68 (d, J = 16.9 Hz, 1H), 3.07 (d, J = 9.2 Hz, 1H),
4.31 (br s, 1H), 5.10 (d, J = 10.6, 1 H), 5.30 (d, J = 17.9 Hz, 1H), 5.76
(br s, 1H), 6.53 (dd, J = 17.4, 11.1 Hz, 1H); 13C NMR (100 MHz,
CDCl3) d (ppm): 27.7, 27.8, 29.3, 36.6, 53.8, 64.2, 81.7, 82.1, 113.5,
130.1, 134.4, 138.4, 170.3; IR (neat): 1147, 1257, 1369, 1608, 1716,
1729, 2934, 2978, 3522 cmꢁ1; EI-Ms (m/z): 324 (M+); HRMS: calcd
for C18H28O5: 324.1937, found: 324.1947.