K. Menzel et al. / Tetrahedron Letters 49 (2008) 415–418
417
5. Halogen/metal exchange of 1,4-dibromobenzene derivatives using
alkyllithium: (a) Dabrowski, M.; Kubicka, J.; Lulinski, S.; Serwa-
towski, J. Tetrahedron 2005, 61, 6590; (b) Parham, W. E.; Piccirilli, R.
M. J. Org. Chem. 1977, 42, 257; (c) Voss, G.; Gerlach, H. Chem. Ber.
1989, 122, 1199; (d) Gilman, H.; Langham, W.; Moore, F. W. J. Am.
Chem. Soc. 1940, 62, 2327.
6. Halogen/metal exchange of 1,3-dibromobenzene derivatives using
alkyllithium: (a) Sunthankar, S. V.; Gilman, H. J. Org. Chem. 1951,
16, 8; (b) Barluenga, J.; Montserrat, J. M.; Florez, J. J. Org. Chem.
1993, 58, 5976; (c) Han, Y.; Walker, S. D.; Young, R. N. Tetrahedron
Lett. 1996, 37, 2703; (d) Hoye, T. R.; Mi, L. Tetrahedron Lett. 1996,
37, 3097.
regioisomer. In general, electron withdrawing groups tend
to activate the bromide at C-2 for exchange, while electron
neutral and donating groups direct the Grignard reagent
predominantly to the bromide at C-1. Additionally, a bro-
mide at C-5 affected the overall reactivity of the compound
and the regioselective ratios compared to compounds with-
out substitution at C-5.
4. Experimental
7. Using alkyllithium: (a) Piette, J. L.; Renson, L. Bull. Soc. Chim. Belg.
1970, 79, 353; (b) Hardcastle, I. R.; Hunter, R. F.; Quayle, P.
Tetrahedron Lett. 1994, 35, 3805; (c) Schlosser, M.; Heiss, C. Eur. J.
Org. Chem. 2003, 447.
8. Halogen/metal exchange of 1,2-dibromobenzene derivatives using
isopropylmagnesium chloride: (a) Krasovskiy, A.; Knochel, P.
Angew. Chem., Int. Ed. 2004, 43, 3333; (b) Cottet, F.; Castagnetti,
E.; Schlosser, M. Synthesis 2005, 798; (c) Menzel, K.; Mills, P. M.;
Dimichele, L.; Frantz, D. E.; Nelson, T. D.; Kress, M. H. Synlett
2006, 1948.
4.1. General information
All starting materials were prepared according to Doyle
et al.11 and gave satisfactory 1H and 13C NMR spectra. All
reactions were carried out under an inert gas atmosphere,
using Schlenk techniques.
5. Typical procedures
9. Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew. Chem., Int.
Ed. 2000, 39, 4414.
5.1. General procedure for the halogen/metal exchange
reaction: 2-bromo-6-fluorobenzoic acid (2g)
10. Aryllithium compounds tend to decompose at higher temperatures via
a dehydrobenzene pathway: (a) Dabrowski, M.; Kubicka, J.; Lulinski,
S.; Serwatowski, J. Tetrahedron Lett. 2005, 46, 4175; (b) Hoffmann,
R. W. Dehydrobenzene and Cycloalkynes; Academic Press: New York,
1967; (c) Wickham, P. P.; Hazen, K. H.; Guo, H.; Jones, G.; Reuter
Hardee, K.; Scott, W. J. J. Org. Chem. 1991, 56, 2045; (d) Wenwei, L.;
Sapountzis, I.; Knochel, P. Angew. Chem., Int. Ed. 2005, 44,
4258.
In a Schlenk flask 782 mg (2.35 mmol) of 3-fluoro-1,2,5-
tribromobenzene was dissolved in 5 mL of THF under
nitrogen. The reaction mixture was cooled to À40 °C and
charged slowly with 1.30 mL (2.58 mmol, 1.98 M) of
iPrMgCl in THF. The reaction mixture was aged for 2 h
at À40 °C before a slow stream of CO2 was passed through
the reaction mixture for 1 h at À40 °C. The reaction mix-
ture was added to 10 mL of 1 M NaOH and the organic
layer was extracted two times with a total of 20 mL of
1 M NaOH. The combined aqueous layer was acidified
using 3 M HCl and extracted three times with a total
amount of 30 mL EtOAc. The organic phase was dried
over Na2SO4, filtered and concentrated in vacuum. The
white residue was purified by flash column chromato-
graphy (EtOAc/hexane 10:1). Compound 2g: 1H NMR
(CDCl3, 300 MHz): 10.29 (br s, 1H), 7.74–7.73 (m, 1H),
7.50 (dd, J = 1.65 Hz, 8.82 Hz, 1H); 3g: 1H NMR (CDCl3,
300 MHz): 10.29 (br s, 1H), 7.78–7.77 (m, 1H), 7.61 (dd,
J = 2.31 Hz, 8.13 Hz, 1H).
11. The synthesis of the starting material was prepared according to:
Doyle, M. P.; van Lente, M. A.; Mowat, R.; Fobare, W. F. J. Org.
Chem. 1980, 45, 2570.
12. Selected data for compounds 1a and 1c–g: 1a: 1H NMR (CDCl3,
300 MHz): 7.71 (d, J = 1.88 Hz, 1H), 7.46 (d, J = 2.15 Hz, 1H), 2.43
(s, 3H); 1c: 1H NMR (CDCl3, 300 MHz): 7.49 (d, J = 1.91 Hz, 1H),
7.18 (d, J = 1.97 Hz, 1H), 3.88 (s, 3H); 1d: 1H NMR (CDCl3,
300 MHz): 8.03 (d, J = 1.88 Hz, 1H), 7.77 (d, J = 2.08 Hz, 1H); 1f: 1H
NMR (CDCl3, 300 MHz): 8.14 (s, 1H), 7.90 (s, 1H); 1g: 1H NMR
(CDCl3, 300 MHz): 7.75 (t, J = 1.91 Hz, 1H), 7.45 (dd, J = 2.13 Hz,
8.04 Hz, 1H).
13. Compound 3a was identified by derivatization to the methyl ester.
The methyl ester was subjected to NOE experiment and a strong NOE
was observed with the ortho proton signal. 2,5-Dibromo-3-methyl-
benzoic acid methyl ester 1H NMR (CDCl3, 300 MHz): 7.74 (d,
J = 2.14 Hz, 1H), 7.64 (d, J = 2.15 Hz, 1H), 3.83 (s, 3H), 2.44 (s, 3H);
13C NMR (CDCl3, 75 MHz): 166.2, 142.1, 136.4, 136.0, 130.2, 121.4,
120.7, 53.3, 23.2.; 2/3b was confirmed by hydrolyzing the arylmag-
nesium intermediate with 1 M hydrochloric acid and comparing the
product mixture with the commercial products: 1,4- and 1,3-dibromo-
benzene.; 2/3c, e–g were identified by a proton coupled 13C NMR
experiment, where the carbonyl carbon was observed as a singlet for
carboxylic acid 2 and a doublet (ꢀJ = 7.5 Hz) for 3.
References and notes
1. Cross coupling reactions of 1,4-dibromobenzene derivatives: Dirk, S.
M.; Proce, D. W.; Chanteau, S.; Kosynki, D. V.; Tour, J. M.
Tetrahedron 2001, 57, 5109.
2. Cross coupling reactions of 1,3-dibromobenzene derivatives: Allen,
D. W.; Nowell, I. W.; March, L. A.; Taylor, B. F. J. Chem. Soc.,
Perkin Trans. 1 1984, 2523.
3. Cross coupling reactions of 1,2-dibromobenzene derivatives: (a)
Singh, R.; Just, G. J. Org. Chem. 1989, 54, 4453; (b) Staab, H. A.;
Hone, M.; Krieger, C. Tetrahedron Lett. 1988, 29, 1905; (c) Cheng, X.;
Hou, G.-H.; Xie, J.-H.; Zhou, Q.-L. Org. Lett. 2004, 6, 2381; 1,2-
dibromofuran derivative: (d) Stock, C.; Hofer, F.; Bach, T. Synlett
2005, 511.
4. For a general review on site selective transition metal catalyzed
reactions of polyhalogenated heteroaromatic ring systems: Schroter,
S.; Stock, C.; Bach, T. Tetrahedron 2005, 61, 2245.
14. For the regioselective analysis of highly substituted benzene deriva-
tives by NMR, see: Dimichele, L.; Menzel, K.; Mills, P.; Frantz, D.;
Nelson, T. Magn. Reson. Chem. 2006, 44, 1041.
15. There was no spectroscopic evidence observable that the bromide in
5-position underwent the halogen/metal exchange. Similar observa-
tion was published, that is: Sunthankar, S. V.; Gilman, H. J. Org.
Chem. 1951, 16, 8.
16. Selected spectroscopic data for 2 and 3: 2b (Heiss, C.; Marzi, E.;
Schlosser, M. Euro. J. Org. Chem. 2003, 4625): 1H NMR (MeOH-d4,
300 MHz): 7.89 (d, J = 2.36 Hz, 1H), 7.59 (s, 1H), 7.49 (d,
J = 2.38 Hz, 1H); 2c: 1H NMR (MeOH-d4, 300 MHz): 7.40 (d,
J = 1.25 Hz, 1), 7.31 (d, J = 1.59 Hz, 1H), 3.85 (s, 3H); 13C NMR
(MeOH-d4, 75 MHz): 167.4, 157.4, 126.5, 123.5, 119.0, 113.9, 55.8; 2d