C O M M U N I C A T I O N S
Table 1. Catalytic Results with [{(P,R,R)-p-tol-BINASO}RhCl]2 (2)
come limitations associated with phosphines. Studies pertinent to
the above transformations are underway.
Acknowledgment. We dedicate this work to Prof. David
Milstein on the occasion of his 60th birthday. R.D. is the recipient
of an Alfred Werner Assistant Professorship and thanks the
foundation for generous financial support. R.M. and R.D. thank
the SNF and the University of Zurich (OCI) for support.
entry
3
4
time (h)
yieldc (%) of 5
% eed
1
2e
3
4
5
6
7
8
9
10
11f
12
13f
14
15
16
17
18g
19
20g
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3b
3c
3d
3e
4l
4l
1
1
1
99 (5al)
99 (5al)
98 (S)
98 (R)
96
98
98
99
99
97
99
97
97
90
99
90
96
95
96
Supporting Information Available: Experimental procedures and
CIFs for 1 and 2. This material is available free of charge via the Internet
4m
4n
4o
4p
4q
4r
4s
4t
4u
4v
4w
4x
4y
4z
4l
97 (5am)
86 (5an)
90 (5ao)
92 (5ap)
93 (5aq)
94 (5ar)
93 (5as)
91 (5at)
55 (5au)
98 (5av)
60 (5aw)
99 (5ax)
89 (5ay)
90 (5az)
99 (5bl)
98 (5cl)
1.5
1.5
1
1.5
1
1.5
1
1
2
1
1
1
1
0.5
3
1
1
References
(1) For reviews: (a) Ojima, I. Catalytic Asymmetric Synthesis II; Wiley-
VCH: New York, 2000. (b) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H.
ComprehensiVe Asymmetric Catalysis; Springer: Berlin, 1999; Vols. 1-3.
(2) (a) Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem.
Soc. 2003, 125, 11508. (b) Tokunaga, N.; Otomaru, Y.; Okamoto, K.;
Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584.
(c) Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. J.
Am. Chem. Soc. 2005, 127, 54.
(3) (a) Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E. M. J. Am. Chem.
Soc. 2004, 126, 1628. (b) Defieber, C.; Paquin, J.-F.; Serna, S.; Carreira,
E. M. Org. Lett. 2004, 6, 3873. (c) Paquin, J.-F.; Stephenson, C. R. J.;
Defieber, C.; Carreira, E. M. Org. Lett. 2005, 7, 3821. (d) Paquin, J.-F.;
Defieber, C.; Stephenson, C. R. J.; Carreira, E. M. J. Am. Chem. Soc.
2005, 127, 10850.
4l
4l
4y
66
91
94
94
98 (5dl)
49 (cis-5ey)
49 (trans-5ey)
(4) Calligaris, M.; Carugo, O. Coord. Chem. ReV. 1996, 153, 83.
(5) (a) Carreno, M. C. Chem. ReV. 1995, 95, 1717. (b) Fernandez, I.; Khiar,
N. Chem. ReV. 2003, 103, 3651.
(6) For achiral catalysis with sulfoxide ligands, see: (a) Haddad, Y. M. Y.;
Henbest, H. B.; Husbands, J.; Mitchell, T. R. B.; Trocha-Grimshaw, J. J.
Chem. Soc., Perkin Trans. I 1974, 596. (b) James, B. R.; Morris, R. H. J.
Chem. Soc., Chem. Commun. 1978, 929. (c) Greenberg, H.; Gogoll, A.;
Ba¨ckvall, J.-E. J. Org. Chem. 1991, 56, 5808. (d) Larock, R. C.;
Hightower, R.; Hasvold, L. A.; Peterson, K. P. J. Org. Chem. 1996, 61,
3584. (e) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346.
(f) Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White, M. C. J. Am.
Chem. Soc. 2006, 128, 9032.
(7) For attempts showing low selectivities/reactivities: (a) James, B. R.;
McMillan, R. S. Can. J. Chem. 1977, 55, 3927. (b) Khiar, N.; Fernandez,
I.; Alcudia, F. Tetrahedron Lett. 1993, 34, 123. (c) Tokunoh, R.; Sodeoka,
M.; Aoe, K.; Shibasaki, M. Tetrahedron Lett. 1995, 36, 8035.
(8) For somewhat better selectivities using sulfoxide/nitrogen or sulfoxide/
phosphine chelates, see: (a) Allen, J. V.; Bower, J. F.; Williams, J. M. J.
Tetrahedron Asymmetry 1994, 5, 1895. (b) Hiroi, K.; Suzuki, Y.
Tetrahedron Lett. 1998, 39, 6499. (c) Hiroi, K.; Suzuki, Y.; Abe, I.;
Hasegawa, Y.; Suzuki, K. Tetrahedron Asymmetry 1998, 9, 3797. (d) Petra,
D. G. I.; Kamer, P. C. J.; Spek, A. L.; Schoemaker, H. E.; van Leeuwen,
P. W. N. M. J. Org. Chem. 2000, 65, 3010. (e) Hiroi, K.; Suzuki, Y.;
Abe, I.; Kawagishi, R. Tetrahedron 2000, 56, 4701. (f) Hiroi, K.; Izawa,
I.; Takizawa, T.; Kawai, K. Tetrahedron 2004, 60, 2155.
(9) For Rh-catalysis with ligand systems that incorporate potentially ligating
sulfoxide moieties, see: (a) Kvintovics, P.; James, B. R.; Heil, B. J. Chem.
Soc., Chem. Commun. 1986, 1810. (b) Alcock, N. W.; Brown, J. M.;
Evans, P. L. J. Organomet. Chem. 1988, 356, 233.
(10) For reviews, see: (a) Hayashi, T.; Yamasaki, K. Chem. ReV. 2003, 103,
2829. (b) Yoshida, K.; Hayashi, T. In Modern Rhodium-Catalyzed Organic
Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, Germany, 2005;
55.
(11) Miashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.;
Noyori, R. J. Am. Chem. Soc. 1980, 102, 7933.
(12) Alternatively, the present sulfinate (S or R) can be obtained in high yield
in one step: Solladie, G.; Hutt, J.; Girardin, A. Synthesis 1987, 67, 173.
(13) The synthesis of (M,S,S)-1 and (P,S,S)-1 has been reported: Clayden, J.;
Kubinski, P. M.; Sammiceli, F.; Helliwell, M.; Diorazio, L. Tetrahedron
2004, 60, 4387.
a 3a ) 2-cylcohexen-1-one, 3b ) 2-cyclopenten-1-one, 3c ) 2-cyclo-
hepten-1-one, 3d ) 5,6-dihydro-2H-pyran-2-one, 3e ) 6-methyl-2-cyclo-
hexen-1-one. b Ar ) Ph (4l), 4-CH3C6H4 (4m), 4-ClC6H4 (4n), 4-FC6H4
(4o), 4-CH3OC6H4 (4p), 3-CH3C6H4 (4q), 3-CF3C6H4 (4r), 3-ClC6H4 (4s),
3- FC6H4 (4t), 3-CH3OC6H4 (4u), 2-CH3C6H4 (4v), 2-FC6H4 (4w),
1-naphthyl (4x), 2-naphthyl (4y), 1-pyrene (4z). c Isolated yields. d Deter-
mined by HPLC analysis with chiral columns (Daicel Chiralcel OD, OD-
H, OJ-H, OB-H or Chiralpak IA). e Using [{(M,S,S)-p-tol-BINASO}RhCl]2
(2) as catalyst. f Using 2 equiv of the boronic acid gives better yields (70-
80%). g Reaction run using 3 mol % of catalyst and 2 equiv of boronic
acid.
to 3e gave cis and trans diastereomers in equal amounts and equal
selectivities after separation through silica gel chromatography
(entry 20), a result that is in contrast to the copper-catalyzed 1,4-
addition of alkyl-zinc reagents to 3e.18 More intriguingly, epimer-
ization of the methyl group in cis-5ey under thermodynamic control
(NaOMe/MeOH or HCl/MeOH) to give the trans diastereomer does
not occur (see Supporting Information).
Finally, we should note that derivatives of [{p-tol-BINASO}-
RhCl]2 (2), namely (p-tol-BINASO)Rh(acac) as well as the cationic,
coordinatively saturated η6-tolylsulfoxide bound dimer [{p-tol-
BINASO}Rh]2(PF6)2, are equally effective catalysts for the present
transformation.
In conclusion, we have shown that chiral bis-sulfoxides can be
used successfully as ligands in asymmetric late-transition metal
catalysis. Precatalyst [{(P,R,R)-p-tol-BINASO}RhCl]2 (2) shows
high reactivities and excellent selectivities in the 1,4-addition of
arylboronic acids to cyclic, electron-poor double bonds and we are
currently expanding the scope of our catalyst system to other
substrates. In the present protocol, catalyst loadings can be kept
low and excess boronic acid is not required for efficient catalysis.
The key advantage of p-tol-BINASO over known chiral ligands
for this transformation (and for asymmetric LTM catalysis in
general) lies in its extraordinarily easy synthesis. In addition, p-tol-
BINASO and other bis-sulfoxides should be more versatile than
diene ligands and be able to support catalysis involving oxidative
addition processes (H2, HSiR3, etc.) or carbon monoxide. Further-
more, examples of achiral oxidation catalysis with sulfoxide-
palladium compounds6c-f show that this ligand class might over-
(14) Its enantiomer (M,S,S)-1 also reacts readily with the Rh precursor, whereas
(M,R,R)-1 and (P,S,S)-1 do not react cleanly to give the corresponding
complexes. In this case, the relative orientation of the tolyl groups on the
sulfoxides hinder formation of the dimer.
(15) Bunten, K. A.; Farrar, D. H.; Poe, A. J.; Lough, A. Organometallics 2002,
21, 3344.
(16) Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. J. Org. Chem. 2005,
70, 2503.
(17) For comparative studies on the binding ability of sulfoxides to LTMs:
(a) Pettinari, C.; Pellei, M.; Caviccio, G.; Crucianelli, M.; Panzeri, W.;
Colapietro, M.; Cassetta, A. Organometallics 1999, 18, 555. (b) Evans,
D. R.; Huang, M.; Seganish, W. M.; Fettinger, J. C.; Williams, T. L. Inorg.
Chem. Commun. 2003, 6, 462. (c) Dorta, R.; Rozenberg, H.; Shimon, L.
J. W.; Milstein, D. Chem. Eur. J. 2003, 9, 5237.
(18) (a) Urbaneja, L. M.; Alexakis, A.; Krause, N. Tetrahedron Lett. 2002,
43, 7887. (b) Whether epimerization of the methyl group occurs during
catalysis under the reaction conditions used is not clear at this stage.
JA710665Q
9
J. AM. CHEM. SOC. VOL. 130, NO. 7, 2008 2173