synthesis of 4-halo-,7 4-thio-,8 4-azido-,9 4-aryl-,10 and 4-hydroxy-
tetrahydropyran,5e,f,7d,11 methods for the synthesis of 4-ami-
notetrahydropyran are limited.12 In this paper, an efficient
method for the synthesis of 4 aminotetrahydropyran from
aldehyde, trimethylallylsilane, and acetonitrile mediated by BF3‚
Et2O is disclosed (Scheme 1). Thus, when benzaldehyde was
subjected to react with allyltrimethylsilane in acetonitrile in the
presence of boron trifluoride etherate, 4-acetamido-2,6-diphe-
nyltetrahydrofuran was obtained in 70% yield.
Stereoselective One-Pot, Three-Component
Synthesis of 4-Amidotetrahydropyran
U. C. Reddy, B. Rama Raju, E. K. Pramod Kumar, and
Anil K. Saikia*
Department of Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, India
SCHEME 1. Synthesis of 4-Acetamidotetrahydropyran
ReceiVed October 30, 2007
The reaction is generalized in Table 1. In all of the cases
studied, 4-acetamidotetrahydropyrans 1b-11b could be obtained
in high purity without any side products. Both aliphatic and
aromatic aldehydes give good yields with high diasteroselectivity
as determined from the 1H and 13C NMR spectrum of the crude
product. The substituent on the aromatic ring has a promising
effect on this reaction. The electron-withdrawing and simple
aldehydes gave good yields compared to electron-donating
groups on the ring. On the other hand, aliphatic aldehydes are
better substituents than the aromatic aldehydes. Only a single
diastereomer was obtained from each reaction, which was
determined by 1H and 13C NMR and comparison of the authentic
samples.11a The conformations of the compounds are in the chair
form, and all three substituents are in the equatorial position.
This was confirmed by NOE experiments and single-crystal
X-ray analysis (ORTEP diagram of 1b in the Supporting
Information).13
The reaction of aldehyde with allylsilane in acetonitrile
mediated by boron trifluoride etherate generated 4-aminotet-
rahydropyrans in good yields. The product is highly stereo-
selective.
Multicomponent reactions are gaining interest in organic
synthesis due to its ability to form multiple bonds in a single
step.1 Substituted tetrahydropyrans are important targets because
of their presence in many natural products.2 These tetrahydro-
pyrans are prepared by hetero-Diels-Alder methods,3 manipula-
tion of carbohydrates,4 Prins cyclization,5 and intramolecular
Michael reactions.6 Although there are a few methods for the
Other nitriles such as dichloroacetonitrile and bezonitrile also
gave the corresponding protected 4-aminotetrahydropyrans 1d-
6d in good yields (Table 2).
(1) (a)Tietze, L. F.; Beifus, U. Angew. Chem., Int. Ed. 1993, 32, 131.
(b) Tietze, L. F. Chem. ReV. 1996, 96, 115. (c) Khan, A. T.; Choudhury, L.
H.; Parvin, T.; Ali, M. A. Tetrahedron Lett. 2006, 47, 8137.
(7) (a) Coppi, L.; Ricci, A.; Taddei, M. Tetrahedron Lett. 1987, 28, 973.
(b) Rychnovsky, S. D.; Hu, Y.; Ellsworth, B. Tetrahedron Lett. 1998, 39,
7271. (c) Yang, J.; Viswanathan, G. S.; Li, C.-J. Tetrahedron Lett. 1999,
40, 1627. (d) Al-Mutairi, E. H.; Crosby, S. R.; Darzi, J.; Harding, J. R.;
Hughes, R. A.; King, C. D.; Simpson, T. J.; Smith, R. W.; Willis, C. L.
Chem. Chemmun. 2001, 835.
(8) Yadav, J. S.; Reddy, B. V. S.; Maity, T.; Kumar, G. G. K. S. N.
Tetrahedron Lett. 2007, 48, 8874.
(9) Yadav, J. S.; Reddy, B. V. S.; Maity, T.; Kumar, G. G. K. S. N.
Tetrahedron Lett. 2007, 48, 7155.
(10) Yang, X-F.; Wang, M.; Zhang, Y.; Li, C.-J. Synlett 2005, 1912.
(11) (a) Markert, M.; Buchen, I.; Kruger, H.; Mahrwald, R. Tetrahedron
2004, 60, 993. (b) Kumar, H. M. S.; Qazi, N. A.; Shafi, S.; Kumar, V. N.;
Krishna, A. D.; Yadav, J. S. Tetrahedron Lett. 2005, 46, 7205. (c) Yadav,
J. S.; Reddy, B. V. S.; Reddy, M. S.; Niranjan, N. J. Mol. Catal. A: Chem.
2004, 210, 99. (d) Barry, C. S.; Bushby, N.; Harding, J. R.; Hughes, R. A.;
Parker, G. D.; Roe, R.; Willis, C. L. Chem. Commun. 2005, 3727. (e) Zhang,
W.-C.; Li, C.-J. Tetrahedron 2000, 56, 2403.
(12) (a) Chandrasekara, N.; Ramalingam, K.; Herd, M. D.; Berlin, K.
D. J. Org. Chem. 1980, 45, 4352. (b) Chandrasekara, N.; Ramalingam, K.;
Satyamurthy, N.; Berlin, K. D. J. Org. Chem. 1983, 48, 1591. (c) Epstein,
T.; O. L.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 16480. (d) Yadav, J. S.;
Reddy, B. V. S.; Kumar, G. G. K. S. N.; Reddy, G. M. Tetrahedron Lett.
2007, 48, 4903.
(2) (a) Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis;
VCH: Weinheim, 1996. (b) Perron, F.; Albizati, K. F. J. Org. Chem. 1987,
52, 4130. (c) Class, Y. J.; DeShong, P. Chem. ReV. 1995, 95, 1843. (d)
Kopecky, D. J.; Rychnovsky, S. D. J. Am. Chem. Soc. 2001, 123, 8420. (e)
Wang, Y.; Janjic, J.; Kozmin, S. A. J. Am. Chem. Soc. 2002, 124, 13670.
(f) Aubele, D. L.; Wan, S.; Floreancig, P. E. Angew. Chem., Int. Ed. 2005,
44, 3485. (g) Bahnck, K. B.; Rychnovsky, S. D. Chem. Commun. 2006,
2388.
(3) (a) Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology
in Organic Synthesis; Academic Press: San Diego, 1987. (b) Gademann,
K.; Chavez, D. E.; Jacobson, E. N. Angew. Chem., Int. Ed. 2002, 41, 3059.
(c) Gouverneur, V.; Reiter, M. Chem.sEur. J. 2005, 11, 5806.
(4) (a) Hanessian, S. Total Synthesis of Natural Products: The ‘Chiron’
Approach; Baldwin, J. E., Eds.; Pergamon: Oxford, 1983. (b) Esteveza, J.
C.; Fairbanks, A. J.; Fleet, G. W. J. Tetrahedron 1998, 54, 13591.
(5) (a) Crosby, S. R.; Harding, J. R.; King, C. D.; Parker, G. D.; Willis,
C. L. Org. Lett. 2002, 4, 577. (b) Chan, K.-P.; Seow, A.-H.; Loh, T.-P.
Tetrahedron Lett. 2007, 48, 37. (c) Arundale, E.; Mikeska, L. A. Chem.
ReV. 1952, 51, 505. (d) Adams, D. R.; Bhatnagar, S. P. Synthesis 1977,
661. (d) Li, C.-J.; Zhang, W.-C. Tetrahedron 2000, 56, 2406. (e) Zhang,
W.-C.; Viswanathan, G. S.; Li, C.-J. Chem. Commun. 1999, 291. (f) Yadav,
J. S.; Reddy, B. V. S.; Kumar, G. M.; Murthy, C. V. S. R. Tetrahedron
Lett. 2001, 42, 89.
(6) (a) Clarke, P. A.; Santos, S. Eur. J. Org. Chem. 2006, 2045 and
references cited therein. (b) Little, R. D.; Masjedizadeh, M. R.; Wallquist,
O.; McLoughlin, J. I. Org. React. 1995, 47, 661.
(13) Crystallographic data for compound CMR-2 has been deposited with
the Cambridge Crystallographic Data Centre as supplementary publication
no. CCDC 658766.
10.1021/jo7023366 CCC: $40.75 © 2008 American Chemical Society
Published on Web 01/17/2008
1628
J. Org. Chem. 2008, 73, 1628-1630