Journal of Medicinal Chemistry
Featured Article
The 1H NMR spectra were recorded on a Varian Inova 600 spectro-
meter operating at a magnetic field of 14.1 T equipped with a 5 mm
1H{13C, 15N} triple resonance gradient probe, a Varian Inova 500 spec-
trometer operating at a magnetic field of 11.7 T equipped with a 5 mm
1H{13C} gradient probe or a Varian Inova 400 spectrometer operating
at a magnetic field of 9.4 T equipped with a 5 mm autoswitchable
multi nuclei gradient probe.
N-Phenyl-5-propyl-1,3,4-oxadiazol-2-amine (15d). 1H NMR
(600 MHz, d6-DMSO) δ 0.93 (t, 3H), 1.66 (tq, 2H), 2.61−2.78 (m,
2H), 6.94 (ddd, 1H), 7.29 (dd, 2H), 7.51 (dd, 2H), 10.30 (s, 1H).
APCI MS m/z: 204.1 (M + 1).
5-(5-Bromothiophen-2-yl)-N-phenyl-1,3,4-oxadiazol-2-amine
1
(15e). H NMR (400 MHz, d6-DMSO) δ 6.98 (t, 1H), 7.28−7.38
(m, 3H), 7.42 (d, 1H), 7.50−7.59 (m, 2H), 10.71 (s, 1H). APCI MS
m/z: 322.0 (M + 1).
Typical Preparation Procedure for 1,3,4-Oxadiazoles. Trifluor-
omethanesulfonic anhydride (50 μL, 0.3 mmol) was added slowly to
a solution of triphenylphosphine oxide (167 mg, 0.6 mmol) in dry
CH2Cl2 (2 mL) at 0 °C. The reaction mixture was stirred for 5 min at
0 °C and then adjusted to room temperature, followed by addition of
the acylated semicarbazide (0.2 mmol). The reaction was monitored
by LCMS. The reaction mixture was quenched with 10% aqueous
NaHCO3 solution. The aqueous layer was extracted with CH2Cl2, and
the combined organic layers were dried over Na2SO4, filtered, and
concentrated. The resultant crude product was purified by automated
HPLC (mobil phase, gradient 5−95% acetonitrile in 0.2% NH3, pH
10; column, Xbridge Prep C18 5 μm OBD 19 mm × 150 mm).
2,5-Diphenyl-1,3,4-oxadiazole (16a). 1H NMR (500 MHz, CDCl3)
δ 4.75 (s, 2H), 7.37−7.62 (m, 3H), 8.14 (s, 2H).
ASSOCIATED CONTENT
■
S
* Supporting Information
The oxadiazole matched pair data set, including all measured
data reported in the article, together with a detailed description
of the experimental methods used to measure log D, solubility,
hERG inhibition, pKa values, CYP inhibition, HLM CLint, TDI,
and CRP. This material is available free of charge via the
AUTHOR INFORMATION
■
Corresponding Author
2-(4-Methylphenyl)-5-phenyl-1,3,4-oxadiazole (16b). 1H NMR
(600 MHz, d6-DMSO) δ 7.56−7.67 (m, 6H), 8.06−8.16 (m, 4H). APCI
MS m/z: 223.1 (M + 1).
2-(4-Chlorophenyl)-5-phenyl-1,3,4-oxadiazole (16c). 1H NMR
(600 MHz, d6-DMSO) δ 3.00 (s, 6H), 6.84 (d, 2H), 7.55−7.02 (m,
2H), 7.89 (d, 2H), 8.03−8.08 (m, 2H). APCI MS m/z: 266 (M + 1).
REFERENCES
■
(1) Pace, A.; Pierro, P. The new era of 1,2,4-oxadiazoles. Org. Biomol.
Chem. 2009, 7, 4337−4348.
1
2-Benzyl-5-phenyl-1,3,4-oxadiazole (16d). H NMR (400 MHz,
CDCl3) δ 4.26 (s, 2H), 7.21−7.30 (m, 1H), 7.30−7.39 (m, 4H),
7.39−7.54 (m, 3H), 7.98 (dd, 2H). APCI MS m/z: 237.1 (M + 1).
2-(4-Chlorophenyl)-5-ethyl-1,3,4-oxadiazole (16e). 1H NMR
(400 MHz, d6-DMSO) δ 1.28 (td, 3H), 2.89 (qd, 2H), 7.61 (dd, 2H),
7.94 (dd, 2H). APCI MS m/z: 209.0 (M + 1).
(2) James, N. D.; Growcott, J. W. Zibotentan. Drugs Future 2009, 34,
624−633.
(3) Jones, A. M.; Helm, J. M. Emerging treatments in cystic fibrosis.
Drugs 2009, 69, 1903−1910.
(4) Summa, V.; Petrocchi, A.; Bonelli, F.; Crescenzi, B.; Donghi, M.;
Ferrara, M.; Fiore, F.; Gardelli, C.; Gonzalez Paz, O.; Hazuda, D. J.;
Jones, P.; Kinzel, O.; Laufer, R.; Monteagudo, E.; Muraglia, E.; Nizi, E.;
Orvieto, F.; Pace, P.; Pescatore, G.; Scarpelli, R.; Stillmock, K.;
Witmer, M. V.; Rowley, M. Discovery of raltegravir, a potent, selective
orally bioavailable HIV-integrase inhibitor for the treatment of HIV-
AIDS infection. J. Med. Chem. 2008, 51, 5843−5855.
(5) Jones, R. M.; Leonard, J. N.; Buzard, D. J.; Lehmann, J. GPR119
agonists for the treatment of type 2 diabetes. Expert Opin. Ther. Pat.
2009, 19, 1339−1359.
2-Phenyl-5-(pyridine-3-yl)-1,3,4-oxadiazole (16f). 1H NMR
(400 MHz, CDCl3) δ 7.40−7.64 (m, 4H), 8.07−8.19 (m, 2H), 8.42 (dt,
1H), 8.77 (dd, 1H), 9.29−9.39 (m, 1H). APCI MS m/z: 265.1 (M + 1).
4-(5-Ethyl-1,3,4-oxadiazol-2-yl)phenol (16g). 1H NMR (600 MHz,
d6-DMSO) δ 1.27 (t, 3H), 2.87 (q, 2H), 6.86−6.93 (m, 2H), 7.74−7.81
(m, 2H).
2-(5-Bromothiophen-2-yl)-5-propan-2-yl-1,3,4-oxadiazole (16h).
1H NMR (400 MHz, CDCl3) δ 1.40 (d, 6H), 3.21 (hept, 1H), 7.08
(t, 1H), 7.43 (d, 1H). APCI MS m/z: 273.0 (M + 1).
2-(N,N-Dimethyl-4-aminophenyl)-5-phenyl-1,3,4-oxadiazole
(6) Lee, S. H.; Seo, H. J.; Lee, S. H.; Jung, M. E.; Park, J. H.; Park,
H. J.; Yoo, J.; Yun, H.; Na, J.; Kang, S. Y.; Song, K. S.; Kim, M. A.
Biarylpyrazolyl oxadiazole as potent, selective, orally bioavailable
cannabinoid-1 receptor antagonists for the treatment of obesity. J. Med.
Chem. 2008, 51, 7216−7233.
(7) Unangst, P. C.; Shrum, G. P.; Connor, D. T.; Dyer, R. D.; Schrier,
D. J. Novel 1,2,4-oxadiazoles and 1,2,4-thiadiazoles as dual 5-lipoxyge-
nase and cyclooxygenase inhibitors. J. Med. Chem. 1992, 35, 3691−
3698.
(8) Zhang, H.-Z.; Kasibhatla, S.; Kuemmerle, J.; Kemnitzer, W.; Ollis-
Mason, K.; Qiu, L.; Crogan-Grundy, C.; Tseng, B.; Drewe, J.; Cai, S. X.
Discovery and structure−activity relationship of 3-aryl-5-aryl-1,2,4-
oxadiazoles as a new series of apoptosis inducers and potential
anticancer agents. J. Med. Chem. 2005, 48, 5215−5223.
(9) Cottrell, D. M.; Capers, J.; Salem, M. M.; DeLuca-Fradley, K.;
Croft, S. L.; Werbovetz, K. A. Antikinetoplastid activity of 3-aryl-5-
thiocyanatomethyl-1,2,4-oxadiazoles. Bioorg. Med. Chem. 2004, 12,
2815−2824.
(10) Ohmoto, K.; Yamamoto, T.; Horiuchi, T.; Imanishi, H.;
Odagaki, Y.; Kawabata, K.; Sekioka, T.; Hirota, Y.; Matsuoka, S.;
Nakai, H.; Toda, M.; Cheronis, J. C.; Spruce, L. W.; Gyorkos, A.;
Wieczorek, M. Design and synthesis of new orally active nonpeptidic
inhibitors of human neutrophil elastase. J. Med. Chem. 2000, 43,
4927−4929.
(11) Ono, M.; Haratake, M.; Saji, H.; Nakayama, M. Development of
novel β-amyloid probes based on 3,5-diphenyl-1,2,4-oxadiazole. Bioorg.
Med. Chem. 2008, 16, 6867−6872.
1
(16i). H NMR (600 MHz, d6-DMSO) δ 7.58−7.66 (m, 3H), 7.67−
7.72 (m, 2H), 8.09−8.16 (m, 4H). APCI MS m/z: 257 (M + 1).
Typical Preparation Procedure for 2-amino-1,3,4-oxadiazoles.
Trifluoromethanesulfonic anhydride (50 μL, 0.3 mmol) was added
slowly to a solution of triphenylphosphine oxide (167 mg, 0.6 mmol)
in dry CH2Cl2 (2 mL) at 0 °C. The reaction mixture was stirred for
5 min at 0 °C and then adjusted to room temperature, followed by
addition of the aminosemicarbazole (0.2 mmol). The reaction was
monitored by LCMS. The reaction mixture was quenched with 10%
aqueous NaHCO3 solution. The aqueous layer was extracted with
CH2Cl2, and the combined organic layers were dried over Na2SO4,
filtered, and concentrated. The resultant crude product was purified
by automated HPLC (mobil phase, gradient 5−95% acetonitrile in
0.2% NH3, pH 10; column, Xbridge Prep C18 5 μm OBD 19 mm ×
150 mm).
1
N,5-Diphenyl-1,3,4-oxadiazol-2-amine (15a). H NMR (600 MHz,
d6-DMSO) δ 6.95−7.05 (m, 1H), 7.29−7.39 (m, 2H), 7.53−7.57 (m,
3H), 7.57−7.62 (m, 2H), 7.83−7.91 (m, 2H). APCI MS m/z: 238.1
(M + 1).
N-Ethyl-5-phenyl-1,3,4-oxadiazol-2-amine (15b). 1H NMR (600 MHz,
d6-DMSO) δ 1.11−1.23 (m, 3H), 3.24 (qd, 2H), 7.45−7.52 (m, 3H), 7.72
(t, 1H), 7.76−7.80 (m, 2H). APCI MS m/z: 190.1 (M + 1).
1
N-Ethyl-5-(pyridin-3-yl)-1,3,4-oxadiazol-2-amine (15c). H NMR
(600 MHz, d6-DMSO) δ 1.14 (dt, 3H), 3.25 (qd, 2H), 7.53 (ddd,
1H), 7.85 (t, 1H), 8.13 (ddd, 1H), 8.65 (dt, 1H), 8.95 (dt, 1H). APCI
MS m/z: 191.1 (M + 1).
1828
dx.doi.org/10.1021/jm2013248 | J. Med. Chem. 2012, 55, 1817−1830