C O M M U N I C A T I O N S
Table 2. Rhodium Catalyzed Intramolecular Hydroamination of
Table 3. Rhodium Catalyzed Intramolecular Hydroamination of
Secondary Aminoalkenea
Primary Aminoalkenea
a Reaction conditions: 0.5 mmol aminoalkene, 5 mol % of rhodium,
and 6 mol % of L2 in 0.5 mL of dioxane at 100 °C for 10 h unless otherwise
specified. b Isolated yield. c Reaction was run for 1 d. d NMR yield.
common functional groups. Studies on the mechanism of this
process and development of enantioselective versions of this process
are ongoing.
Acknowledgment. We thank the NIH (NIGMS GM-55382) for
support of this work and Johnson-Matthey for rhodium.
Supporting Information Available: All experimental procedures
and characterization data of new compounds. This material is available
References
(1) (a) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem., Int. Ed.
2004, 43, 3368. (b) Hultzsch, K. C. Org. Biomol. Chem. 2005, 3, 1819.
(c) Muller, T. E.; Beller, M. Chem. ReV. 1998, 98, 675. (d) Brunet, J. J.;
Neibecker, D. In Catalytic Heterofunctionalizaiton from Hydroamination
to Hydrozirconation; Togni, A., Gruetzmacher, H., Eds.; Wiley-VCH:
New York 2001; p 91.
(2) (a) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673. (b) Stubbert,
B. D.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 6149. (c) Stubbert, B.
D.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 4253. (d) Yu, X.; Marks,
T. J. Organometallics 2007, 26, 365. (e) Ryu, J. S.; Marks, T. J.;
McDonald, F. E. J. Org. Chem. 2004, 69, 1038. (f) Gribkov, D. V.;
Hultzsch, K. C.; Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748. (g) Kim,
J. Y.; Livinghouse, T. Org. Lett. 2005, 7, 1737. (h) Kim, Y. K.;
Livinghouse, T. Angew. Chem., Int. Ed. 2002, 41, 3645. (i) Molander, G.
A.; Pack, S. K. J. Org. Chem. 2003, 68, 9214.
a Reaction conditions: 0.5 mmol aminoalkene, 2.5 mol % of [Rh(COD)2]-
BF4, and 3 mol % of L2 in 0.5 mL of dioxane at 70 °C for 7 h unless
otherwise specified. b Isolated yield (average of two runs). c Reaction run
using 7.5 mol % of catalyst and 9 mol % of ligand at 120 °C. Reaction
run using 5 mol % of catalyst and 6 mol % of ligand at 100 °C.
d
(3) (a) Bytschkov, I.; Doye, S. Eur. J. Org. Chem. 2003, 2003, 935. (b)
Gribkov, D. V.; Hultzsch, K. C. Angew. Chem., Int. Ed. 2004, 43, 5542.
(c) Thomson, R. K.; Bexrud, J. A.; Schafer, L. L. Organometallics 2006,
25, 4069. (d) Wood, M. C.; Leitch, D. C.; Yeung, C. S.; Kozak, J. A.;
Schafer, L. L. Angew. Chem., Int. Ed. 2007, 46, 354.
(4) (a) Beller, M.; Trauthwein, H.; Eichberger, M.; Breindl, C.; Herwig, J.;
Muller, T. E.; Thiel, O. R. Chem. Eur. J. 1999, 5, 1306. (b) Utsunomiya,
M.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 14286.
In addition, these reactions occurred in the presence of a variety
of functional groups, such as halides, nitriles, and esters (entries
5-7). Perhaps most remarkable, reaction of the substrate in entry
10 containing an allylic alcohol function occurred in good yield
with high diastereoselectivity without significant decomposition of
the alcohol or deactivation of the catalyst. The reaction of N-benzyl-
2,2-diphenylpent-4-en-1-amine even occurred in an 82% yield in
the presence of 5.0 equiv of added water.
Most additions of amines to alkenes have been conducted with
terminal, monosubstituted olefins. However, reactions with disub-
stituted olefins catalyzed by this rhodium system also formed cy-
clized products. Additions of amines occurred across geminally sub-
stituted olefins (entries 11 and 12), including those in relatively
unbiased substrates, and across an unstrained internal olefin (entry
13).14
The rhodium catalyst also increased the scope of amines that
would add to alkenes. For example, the species generated from
5% Rh(COD)2BF4 and 6% of L2 catalyzed the cyclization of
aminoalkenes containing primary amine units (Table 3). Reactions
of primary aminoalkenes to form five- and six-membered rings
occurred in good yields.
In summary, we report a rhodium complex that catalyzes
cyclizations of aminoalkenes under mild conditions with substrates
containing primary or secondary amines, terminal or internal
alkenes, and linkers that possess or lack substituents that bias the
substrate toward cyclization. This reaction tolerates a variety of
(5) Takemiya, A.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 6042.
(6) Utsunomiya, M.; Kuwano, R.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem.
Soc. 2003, 125, 5608.
(7) (a) Bender, C. F.; Widenhoefer, R. A. Chem. Commun. 2006, 4143. (b)
Brouwer, C.; He, C. Angew. Chem., Int. Ed. 2006, 45, 1744. (c) Hamilton,
G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496. (d)
Komeyama, K.; Morimoto, T.; Takaki, K. Angew. Chem., Int. Ed. 2006,
45, 2938. (e) Liu, X. Y.; Li, C. H.; Che, C. M. Org. Lett. 2006, 8, 2707.
(f) Taylor, J. G.; Whittall, N.; Hii, K. K. Org. Lett. 2006, 8, 3561. (g)
Zhang, J.; Yang, C. G.; He, C. J. Am. Chem. Soc. 2006, 128, 1798. (h)
Zhang, Z.; Bender, C. F.; Widenhoefer, R. A. Org. Lett. 2007, 9, 2887.
(i) Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R.
A. J. Am. Chem. Soc. 2006, 128, 9066.
(8) For intermolecular addition to hexene at high temperature in modest yields,
see: (a) Brunet, J. J.; Chu, N. C.; Diallo, O. Organometallics 2005, 24,
3104; For intermolecular addition to ethylene, see: (b) Brunet, J. J.;
Cadena, M.; Chu, N. C.; Diallo, O.; Jacob, K.; Mothes, E. Organometallics
2004, 23, 1264. (c) Coulson, D. R. Tetrahedron Lett. 1971, 12, 429.
(9) Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2005, 127, 1070.
(10) Michael, F. E.; Cochran, B. M. J. Am. Chem. Soc. 2006, 128, 4246.
(11) The side products were identified by signals in the crude 1H NMR spectrum
and by GC-MS.
(12) Gaertzen, O.; Buchwald, S. L. J. Org. Chem. 2002, 67, 465.
(13) (a) Rosenfeld, D. C.; Shekhar, S.; Takemiya, A.; Utsunomiya, M.; Hartwig,
J. F. Org. Lett. 2006, 8, 4179. (b) Ackermann, L.; Kaspar, L. T.;
Althammer, A. Org. Biomol. Chem. 2007, 5, 1975.
(14) (a) Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc.
1988, 110, 6738. (b) Dorta, R.; Egli, P.; Zurcher, F.; Togni, A. J. Am.
Chem. Soc. 1997, 119, 10857.
JA710126X
9
J. AM. CHEM. SOC. VOL. 130, NO. 5, 2008 1571