F. Jian et al. / Spectrochimica Acta Part A 69 (2008) 647–653
653
between the title compound and another compound, thermo-
dynamic properties Cp0,m, Hm0 and Sm0 could be obtained from
these equations and then used to calculate the change of Gibbs
free energy of the reaction, which will assist us to judge the
spontaneity of the reaction.
[7] D.E. Rivett, J. Rosevear, J.F.K. Wilshire, Aust. J. Chem. 36 (1983)
1649.
[8] A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, M. Nieuwenhuizen,
Chem. Commun. (1996) 1967.
[9] K. Rurack, U. Resch-Genger, J.L. Bricks, M. Spieles, Chem. Commun.
(2000) 2103.
[10] K. Rurack, J.L. Bricks, B. Schulz, M. Maus, G. Reck, U. Resch-Genger, J.
Phys. Chem. A 104 (2000) 6171.
[11] C.J. Fahrni, L.C. Yang, D.G. VanDerveer, J. Am. Chem. Soc. 125 (2003)
3799.
4. Conclusions
1-Acetyl-3-(2,4-dichloro-5-fluoro-phenyl)-5-phenyl-
pyrazoline has been synthesized and characterized by elemental
analysis, IR, UV–vis and X-ray single crystal diffraction. DFT
calculations at B3LYP/6-31G* level for the title compound
show that the optimized geometry closely resemble the crystal
structure. The comparisons between the calculated vibrational
frequencies and the experimental IR spectra indicate they
are supported each other. The predicted electronic absorption
spectra have some blue shifts compared with the experimental
data and molecular orbital coefficients analyses suggest that
the electronic spectra are assigned to n → * and → *
electronic transitions. The correlations between the thermody-
namic properties Cp0,m, Sm0 and Hm0 and temperatures T are also
obtained.
[12] A. Wagner, C.W. Schellhammer, S. Petersen, Angew. Chem., Int. Ed. Engl.
5 (1966) 699.
[13] J.K. Labanowski, J. Andzelm, Density Functional Methods in Chemistry,
Springer-Verlag, New York, 1991.
[14] N. Oliphant, R.J. Bartlett, J. Chem. Phys. 100 (1994) 6550.
[15] R.M. Dickson, A.D. Becke, J. Chem. Phys. 99 (1993) 3898.
[16] B.G. Johnson, P.M.W. Gill, J.A. Pople, J. Chem. Phys. 98 (1993)
5612.
[17] F. Yakuphanoglu, Y. Atalay, M. Sekerci, Spectrosc. Acta Part A 66 (2007)
438.
[18] G.M. Sheldrick, SHELXTL, v5 Reference Manual, Siemens Analytical
X-Ray Systems: Madison, WI, 1997.
[19] A.J. Wilson, International Table for X-Ray Crystallography, vol. C, Kluwer
Academic, Dordrecht, TheNetherlands, 1992(Tables6.1.1.4(pp. 500–502)
and 4.2.6.8 (pp. 219–222), respectively).
[20] C. Peng, P.Y. Ayala, H.B. Schlegel, M.J. Frisch, J. Comput. Chem. 49
(1996) 17.
[21] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.
Cheeseman, J.A. Montgomery, Vreven, Jr., K.N. Kudin, J.C. Burant, J.M.
Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scal-
mani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo,
J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R.
Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A.Voth,
P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels,
M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B.
Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J.
Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challa-
combe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, Gaussian Inc., Wallingford, CT, 2004.
Acknowledgements
This work was supported by Natural Science Foundation
of Shandong Province (No. Y2005B04), PR China, Doctoral
Fund of Shandong Province, PR China (No. 2006BS01043) and
Doctoral Fund of Qingdao University of Science & Technology.
Appendix A. Supplementary data
Supplementary data associated with this article can be found,
References
[22] E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52 (1984) 997.
[23] M. Petersilka, U.J. Gossmann, E.K.U. Gross, Phys. Rev. Lett. 76 (1966)
1212.
[24] R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256 (1996) 1996.
[25] C. Jamorski, M.E. Casida, D.R. Salahub, J. Chem. Phys. 104 (1996) 5134.
[26] T. Steiner, Cryst. Rev. 6 (1996) 1.
[27] G.A. Jeffrey, H. Maluszynska, J. Mitra, Int. J. Biol. Macromol. 7 (1985)
336.
[28] F.F. Jian, P.S. Zhao, Q. Yu, Q.X. Wang, K. Jiao, J. Phys. Chem. A 108
(2004) 5258.
[1] W.T. Mason, Fluorescent and Luminescent Probes for Biological Acti-
vity: A Practical Guide to Technology for Quantitative Real-time Analysis,
Academic Press, San Diego, CA, 1999.
[2] A. Takahashi, P. Camacho, J.D. Lechleiter, B. Herman, Physiol. Rev. 79
(1999) 1089.
[3] S.C. Burdette, G.K. Walkup, B. Spingler, R.Y. Tsien, S.J. Lippard, J. Am.
Chem. Soc. 123 (2001) 7831.
[4] T. Hirano, K. Kikuchi, Y. Urano, T. Nagano, J. Am. Chem. Soc. 124 (2002)
6555.
[29] J.A. Pople, H.B. Schlegel, R. Krishnan, D.J. Defrees, J.S. Binkley, M.J.
Frisch, R.A. Whiteside, R.F. Hout, W.J. Hehre, Int. J. Quantum Chem.,
Quantum Chem. Symp. 15 (1981) 269.
[5] B.P. Esposito, S. Epsztejn, W. Breuer, Z.I. Cabantchik, Anal. Biochem. 304
(2002) 1.
[30] A. Frish, A.B. Nielsen, A.J. Holder, Gaussview Users Manual, Gaussian
Inc., Pittsburgh, 2000.
[6] A. Takahashi, Y.P. Zhang, V.E. Centonze, B. Herman, Biotechniques 30
(2001) 804.