6652
N. I. Vasile6ich, D. H. Coy / Tetrahedron Letters 43 (2002) 6649–6652
carbamate reactions, essentially depend on the type of
nucleophile and the reaction conditions used. N-
Methyl-N-phenyl-O-succinimidyl carbamate also leads
to a mixture of products but the reduced percentage of
urea was probably due to stronger steric hindrance.
Comparison of the reaction products from N-methyl-
N-p-methoxyphenyl carbamate and N-methyl-N-
phenyl-O-succinimidyl carbamate reveals higher yields
of the ring opening product presumably because of the
electron-donating effect of p-methoxy-substituent of
the aryl-group.
5. Vasilevich, N.; Sachinvala, N.; Maskos, K.; Coy, D. Tet-
rahedron Lett. 2002, 43, 3443.
6. Suli-Vargha, H.; Jeney, A.; Lapis, K.; Medzihradszky, K.
J. Med. Chem. 1987, 30, 583.
7. Harada, H.; Morie, T.; Hirokawa, Y.; Terauchi, H.; Fuji-
wara, I.; Yoshida, N.; Kato, Sh. Chem. Pharm. Bull. 1995,
43, 1912.
8. Bermudez, J.; Dabbs, S.; Joiner, K.; King, F. J. Med.
Chem. 1990, 33, 1929.
9. 1H NMR spectra (DMSO) for N-[O-(N%-alkyl-N%-arylcar-
bamoyl)]-succinmonoamides: 3B: l 11.79 (br s, 1H); 7.87
(br s, 1H); 7.64 (br s, 1H); 6.82–7.28 (m, 3H); 4.05 (t, 2H);
3.03–3.19 (m, 4H); 2.27–2.41 (m, 4H); 1.24–1.39 (m, 4H);
0.89 (t, 3H); 4B: l 11.77 (br s, 1H); 7.87 (t, 1H); 7.64 (br
s, 1H); 7.15–7.29 (m, 7H); 7.02 (t, 1H); 4.05 (t, 2H); 3.17
(t, 2H); 3.05–3.09 (m, 2H); 2.575 (t, 2H); 2.34–2.40 (m,
4H); 1.57–1.60 (m, 2H); 1.38–1.44 (m, 2H); 5B: l 11.68 (br
s, 1H); 7.86 (t, 1H); 7.65 (br s, 1H); 7.01–7.29 (m, 3H);
4.05 (t, 1H); 3.33–3.67 (m, 4H); 3.18 (t, 2H); 3.01–3.11 (q,
2H); 2.36–2.39 (m, 4H); 1.29–1.63 (m, 6H); 0.89 (t, 3H);
6B: l 11.80 (br s, 1H); 7.62 (br d, 1H); 6.81–7.34 (m, 8H);
4.05 (t, 2H); 3.61–3.63 (m, 4H); 3.10–3.25 (m, 6H); 2.67 (t,
2H); 2.44 (t, 2H); 7B: l 11.77 (br s, 1H); 7.65 (br s, 1H);
4.05 (t, 2H); 3.39–3.43 (m, 4H); 3.17 (t, 2H); 2.59 (t, 2H);
2.40 (t, 2H); 1.42–1.60 (m, 6H); 8B: l 11.84 (br s, 1H); 7.65
(br s, 1H); 7.01–7.29 (m, 3H); 4.05–4.09 (m, 4H); 3.17 (t,
2H); 2.43–2.58 (m, 4H); 1.20 (t, 3H); 9B: l 11.07 (br s,
1H); 7.01 (d, 1H); 6.48–6.90 (m, 3H); 5.43 (br s, 1H); 3.39
(t, 2H); 2.89 (t, 2H); 2.34–2.42 (m, 4H); 10B: l 11.56 (br s,
1H); 7.83 (t, 1H); 7.26–7.43 (m, 4H); 3.28 (s, 3H); 3.01–
3.04 (q, 2H); 2.32 (s, 4H); 1.26–1.39 (m, 4H); 0.87 (t, 3H);
11B: l 11.49 (br s, 1H); 7.82 (t, 1H); 7.29 (d, 2H); 6.95 (d,
2H); 3.77 (s, 3H); 3.22 (s, 3H); 3.00–3.07 (q, 2H); 2,31 (s,
4H); 1.23–1.39 (m, 4H); 0.87 (t, 3H); 12B: l 11.51 (br s,
1H); 7.84 (t, 1H); 7.29 (d, 2H); 6.95 (d, 2H); 3.77 (s, 3H);
3.32–3.36 (m, 4H); 3.22 (s, 3H); 3.05–3.09 (q, 2H); 2.31 (s,
4H); 1.28–1.63 (m, 6H); 0.88 (t, 3H).
In conclusion, we have shown that N-substituents in
O-succinimidyl carbamates have a profound affect on
reaction pathways due primarily to their electronic
effect. While the reactions between N-monoalkyl and
N,N-dialkyl carbamates and nucleophiles are very
selective, N-aryl-N-alkyl carbamates fall in between
and seem to usually afford a mixture of urea and
hydroxylamine derivative. Although from a synthetic
standpoint it is sometimes possible to use N-aryl-N-
alkyl carbamates for urea synthesis,7,8 caution should
be exercised regarding the unavoidable production of
significant amounts of the ring opening contaminants.
References
1. Guichard, G.; Semetey, V.; Rodriguez, M.; Briand, J.-P.
Tetrahedron Lett. 2000, 41, 1553.
2. Guichard, G.; Semetey, V.; Didierjean, C.; Aubry, A.;
Briand, J.-P.; Rodriguez, M. J. Org. Chem. 1999, 64, 8702.
3. Yang, L.; Patchett, A.; Pasternak, A.; Berk, S. WO
9844921, 1998.
4. Takeda, K.; Akadi, Y.; Saiki, A.; Tsukahara, T.; Ogura,
H. Tetrahedron Lett. 1983, 24, 4569.