Synthesis of Novel Enantiopure
4-Hydroxypipecolic Acid Derivatives with a
Bicyclic â-Lactam Structure from a Common
3-Azido-4-oxoazetidine-2-carbaldehyde Precursor
Benito Alcaide,*,† Pedro Almendros,*,‡ Amparo Luna,† and
Teresa Mart´ınez del Campo†
Departamento de Qu´ımica Orga´nica I, Facultad de Qu´ımica,
UniVersidad Complutense de Madrid, 28040-Madrid, Spain, and
Instituto de Qu´ımica Orga´nica General, CSIC, Juan de la
CierVa 3, 28006-Madrid, Spain
FIGURE 1. Representative biologically relevant 4-hydroxypipecolic
acids.
In addition to the important medicinal properties of the
â-lactam nucleus,6 the 2-azetidinone skeleton has been exten-
sively used as a template on which to build cyclic structures
fused to the four-membered ring, using the chirality and
functionalization of the â-lactam nucleus as a stereocontrolling
element.7 On the other hand, when designing peptide-based
drugs, the use of conformationally constrained amino acids is
alcaideb@quim.ucm.es; palmendros@iqog.csic.es
ReceiVed NoVember 7, 2007
(3) (a) Sakai, R.; Matsubara, H.; Shimamoto, K.; Jimbo, M.; Kamiya,
H.; Namikoshi, M. J. Nat. Prod. 2003, 66, 784. (b) Ornstein, P. L.; Arnold,
M. B.; Lunn, W. H. W.; Heinz, L. J.; Leander, J. D.; Lodge, D.; Schoepp,
D. D. Bioorg. Med. Chem. Lett. 1998, 8, 389. (c) Skiles, J. W.; Giannousis,
P. P.; Fales, K. R. Bioorg. Med. Chem. Lett. 1996, 6, 963. (d) Mannaioni,
G.; Alesiani, M.; Carla`, V.; Natalini, B.; Marinozzi, M.; Pellicciari, R.;
Moroni, F. Eur. J. Pharmacol. 1994, 251, 201. (e) Pellicciari, R.; Natalini,
B.; Constantino, G.; Garzon, A.; Luneia, R.; Mahmoud, M. R.; Marinozzi,
M.; Roberti, M.; Rosato, G. C.; Shiba, S. A. Farmaco 1993, 48, 151. (f)
Pellicciari, R.; Natalini, B.; Luneia, R.; Marinozzi, M.; Marinella, R.; Rosato,
G. C.; Sadeghpour, B. M.; Snyder, J. P.; Monahan, J. B.; Moroni, F. Med.
Chem. Res. 1992, 2, 491.
(4) (a) Beaulieu, P. L.; Anderson, P. C.; Cameron, D. R.; Croteau, G.;
Gorys, V.; Grand-Maˆıtre, C.; Lamarre, D.; Liard, F.; Paris, W.; Plamondon,
L.; Soucy, F.; Thibeault, D.; Wernic, D.; Yoakim, C. J. Med. Chem. 2000,
43, 1094. (b) Lamarre, D.; Croteau, G.; Bourgon, L.; Thibeault, D.; Wardrop,
E.; Clouette, C.; Vaillancourt, M.; Cohen, E.; Pargellis, C.; Yoakim, C.;
Anderson, P. C. Antimicrob. Agents Chemother. 1997, 41, 965.
(5) For a review on the synthesis of enantiopure pipecolic acid derivatives,
including 4-hydroxypipecolic acids, see: (a) Kadouri-Puchot, C.; Comesse,
S. Amino Acids 2005, 29, 101. For selected references, see: (b) Cordero,
F. M.; Bonollo, S.; Machetti, F.; Brandi, A. Eur. J. Org. Chem. 2006, 3235.
(c) Lloyd, R. C.; Lloyd, M. C.; Smith, M. E. B.; Holt, K. E.; Swift, J. P.;
Keene, P. A.; Taylor, S. J. C.; McCague, R. Tetrahedron 2004, 60, 717.
(d) Marin, J.; Didierjean, C.; Aubry, A.; Casimir, J.-R.; Briand, J.-P.;
Guichard, G. J. Org. Chem. 2004, 69, 130.
(6) For antibiotic uses, see: (a) Singh, G. S. Mini-ReV. Med. Chem. 2004,
4, 69. (b) Singh, G. S. Mini-ReV. Med. Chem. 2004, 4, 93. (c) Niccolai, D.;
Tarsi, L.; Thomas, R. J. Chem. Commun. 1997, 2333. (d) Southgate, R.
Contemp. Org. Synth. 1994, 1, 417. (e) Southgate, R.; Branch, C.; Coulton,
S.; Hunt, E. In Recent Progress in the Chemical Synthesis of Antibiotics
and Related Microbial Products; Lukacs, G., Ed.; Springer: Berlin,
Germany, 1993; Vol. 2, p 621. (f) The Chemistry of â-Lactams; Page, M.
I., Ed.; Chapman and Hall: London, UK, 1992. (g) Chemistry and Biology
of â-Lactam Antibiotics; Morin, R. B., Gorman, M., Eds.; Academic: New
York, 1982; Vols. 1-3. For nonantibiotic uses, see: (h) Rothstein, J. D.;
Patel, S.; Regan, M. R.; Haenggeli, C.; Huang, Y. H.; Bergles, D. E.; Jin,
L.; Hoberg, M. D.; Vidensky, S.; Chung, D. S.; Toan, S. V.; Bruijn, L. I.;
Su, Z.-z.; Gupta, P.; Fisher, P. B. Nature 2005, 433, 73. (i) Hogan, P. C.;
Corey, E. J. J. Am. Chem. Soc. 2005, 127, 15386. (j) Clader, J. W. J. Med.
Chem. 2004, 47, 1. (k) Kvaerno, L.; Ritter, T.; Werder, M.; Hauser, H.;
Carreira, E. M. Angew. Chem., Int. Ed. 2004, 43, 4653. (l) Burnett, D. A.
Curr. Med. Chem. 2004, 11, 1873. (m) Veinberg, G.; Vorona, M.;
Shestakova, I.; Kanepe, I.; Lukevics, E. Curr. Med. Chem. 2003, 10, 1741.
(n) Page, M. I.; Laws, A. P. Tetrahedron 2000, 56, 5631. (o) Haley, T. M.;
Angier, S. J.; Borthwick, A. D.; Singh, R.; Micetich, R. G. Drugs 2000, 3,
512.
Two different stereocontrolled accesses to new 4-hydrox-
ypipecolic acid analogues with a bicyclic â-lactam structure
have been developed by using intramolecular reductive
amination or allenic hydroamination reactions in 2-azetidi-
none-tethered azides. The access to the cyclization precursors
was achieved from 3-azido-4-oxoazetidine-2-carbaldehyde
via metal-mediated carbonyl-allenylation in aqueous envi-
ronment or by organocatalytic direct aldol reaction. The tin
hydride-promoted cyclization of the 2-azetidinone-tethered
azidoallene is totally regioselective for the central allenic
carbon providing a fused piperidine.
4-Hydroxypipecolic acids are naturally occurring nonprotei-
nogenic amino acids which have been isolated from the leaves
of Calliandra pittieri, Strophantus scandeus, and Acacia os-
waldii,1 and are constituents of many biologically active natural
and synthetic products such as depsipeptide antibiotics,2 N-
methyl-D-aspartic acid (NMDA) receptor antagonists,3 and HIV
protease inhibitors such as palinavir (Figure 1).4 Due to the great
interest in these derivatives much effort has been devoted to
their preparation.5
† Universidad Complutense de Madrid.
‡ Instituto de Qu´ımica Orga´nica General.
(1) (a) Kite, G. C.; Wieringa, J. J. Biochem. Syst. Ecol. 2003, 31, 279.
(b) Kite, G. C.; Ireland, H. Phytochemistry 2002, 59, 163. (c) Evans, S. V.;
Shing, T. K. M.; Aplin, R. T.; Fellows, L. E.; Fleet, G. W. J. Phytochemistry
1985, 24, 2593. (d) Romeo, J. T.; Swain, L. A.; Bleeker, A. B. Phytochem-
istry 1983, 22, 1615. (e) Ahmad, V. U.; Khan, M. A. Phytochemistry 1971,
10, 3339. (f) Schenk, V. W.; Schutte. H. R. Flora 1963, 153, 426. (g) Clark-
Lewis, J. W.; Mortimer P. I. J. Chem. Soc. 1961, 189.
(2) (a) Mukhtar, T. A.; Wright, G. D. Chem. ReV. 2005, 105, 529. (b)
Di Giambattista, M.; Nyssen, E.; Percher, A.; Cocito, C. Biochemistry 1990,
29, 9203. (c) Reed, J. W.; Purvis, M. B.; Kingston, D. G. I.; Blot, A.;
Gossele, F. J. Org. Chem. 1989, 54, 1161. (d) Kessler, H.; Ku¨hn, M.;
Lo¨schner, T. Liebigs Ann. Chem. 1986, 1. (e) Hollstein, U. Chem. ReV.
1974, 74, 625. (f) Vanderhaeghe, H.; Parmentier, G. J. Am. Chem. Soc.
1960, 82, 4414.
(7) For reviews, see: (a) Alcaide, B.; Almendros, P. Curr. Med. Chem.
2004, 11, 1921. (b) Alcaide, B.; Almendros, P. Curr. Org. Chem. 2002, 6,
245.
10.1021/jo702405h CCC: $40.75 © 2008 American Chemical Society
Published on Web 01/16/2008
J. Org. Chem. 2008, 73, 1635-1638
1635