C O M M U N I C A T I O N S
In summary, the first lanthanide complex featuring a phosphin-
idene functional group has been prepared and isolated. Although
the large ionic radii of the lanthanide ions make it challenging to
introduce enough steric saturation to stabilize a terminal phosphin-
idene, these results demonstrate that the formation of lanthanide
phosphinidenes is possible and that the phosphinidene dimer 5
behaves as a nucleophilic phosphinidene transfer reagent. Efforts
focused on stabilizing a terminal lanthanide-based phosphinidene
complex by modifying both the supporting ligand and the substitu-
ent on the phosphorus atom are currently underway in our
laboratory.
Acknowledgment. For financial support, we acknowledge
LANL (Director’s PD Fellowship to J.D.M.), the LANL G. T.
Seaborg Institute (PD fellowship to J.D.M.; summer student
fellowship to K.C.J.), the Division of Chemical Sciences, Office
of Basic Energy Sciences, the LANL LDRD Program (J.L.K.), the
NSERC of Canada for Discovery & Tools grants (D.G.) and a PGS
D scholarship (K.J.T.N.), the NSF (CHE-0517798), and the Sloan
& Dreyfus Foundations (O.V.O.). We are thankful to Y. Zhu, M.
Puri, and Dr. S. Gatard for the synthesis of initial samples of 1 and
2 used in this work.
Figure 2. Molecular structure of complex 5 with thermal ellipsoids
projected at the 50% probability level. Selected bond distances (Å) and
angles (°): Lu(1)-P(3) 2.6031(16), Lu(1)-P(4) 2.6724(14), Lu(2)-P(3)
2.6527(16), Lu(2)-P(2) 2.5973(15), Lu(1)-N(1) 2.296(4), Lu(2)-N(2)
2.295(4), Lu(1)-P(3)-Lu(2) 96.96(5), Lu(1)-P(4)-Lu(2) 96.61(5), P(3)-
Lu(1)-P(4) 82.90(5), P(4)-Lu(2)-P(3) 83.40(5).
) 2.817(1), 2.789(1) Å; [Me2Si(C5Me4)(PPh)Lu(µ-H)]2(THF)3,
Lu-P ) 2.788(2), 2.861(2) Å; [Me2Si(C5Me4)(PMes*)Lu(µ-H)-
(THF)]2, Lu-P ) 2.683(1) Å; [Cp2Lu{µ-PPh2}2Li(tmeda)], Lu-P
) 2.782(1), 2.813(2) Å).6a,9
Supporting Information Available: Full experimental and char-
acterization details for all new compounds. Crystallographic data for 3
and 5. This material is available free of charge via the Internet at http://
pubs.acs.org.
Interestingly, the mesityl rings are nearly planar with the Lu2P2
core, with Lu(1)-P(4)-C(10)-C(11) and Lu(2)-P(3)-C(1)-C(2)
dihedral angles of 7.11 and 5.81°, respectively. This likely
minimizes unfavorable interactions between the ortho-CH3 groups
on the mesityl rings and the iPr groups on the PNP ligand. Finally,
the sum of the angles around P(3) and P(4) are 358.9 and 356.5°,
respectively, allowing for π-donation of the phosphorus lone pairs
to the Lu atoms. All of these combined structural features are
consistent with the formulation of complex 5 as an asymmetric
dimer of the terminal phosphinidene, (PNPiPr)LudPMes, with a
bond order greater than 1 in the Lu(1)-P(3) and Lu(2)-P(4)
interactions.
References
(1) (a) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; Wiley-
Interscience: New York, 1988. (b) Cowley, A. H. Acc. Chem. Res. 1997,
30, 445-451. (c) Lammertsma, K. Top. Curr. Chem. 2003, 229, 95-
119. (d) Giesbrecht, G. R.; Gordon, J. C. Dalton Trans. 2004, 2387-
2393. (e) Clark, D. L.; Gordon, J. C.; Hay, P. J.; Poli, R. Organometallics
2005, 24, 5447-5787. (f) Weber, L. Eur. J. Inorg. Chem. 2007, 4095-
4117.
(2) Arney, D. S. J.; Schnabel, R. C.; Scott, B. L.; Burns, C. J. J. Am. Chem.
Soc. 1996, 118, 6780-6781.
(3) Duttera, M. R.; Day, V. W.; Marks, T. J. J. Am. Chem. Soc. 1984, 106,
2907-2912.
(4) (a) Weng, W.; Yang, L.; Foxman, B. M.; Ozerov, O. V. Organometallics
2004, 23, 4700-4705. (b) Mindiola, D. J. Acc. Chem. Res. 2006, 39, 813-
821. (c) Zhao, G.; Basuli, F.; Kilgore, U. J.; Fan, H.; Aneetha, H.;
Huffman, J. C.; Wu, G.; Mindiola, D. J. J. Am. Chem. Soc. 2006, 128,
13575-13585. (d) Bailey, B. C.; Fan, H.; Huffman, J. C.; Baik, M. H.;
Mindiola, D. J. J. Am. Chem. Soc. 2007, 129, 8781-8793. (e) Liang, L.
C. Coord. Chem. ReV. 2006, 250, 1152-1177.
Preliminary reactivity studies demonstrate that 5 behaves simi-
larly to known nucleophilic phosphinidene systems such as [(N3N)-
t
TadPR] (R ) Ph, Cy, Bu; N3N ) (Me3SiNCH2CH2)3N)10 and
Cp2Zr(dPMes*)(PMe3) (Figure 2).11 Complex 5 reacts smoothly
as a phospha-Wittig reagent with aldehydes and ketones to give
the corresponding phosphaalkenes. For example, reaction of 5 with
pivalaldehyde affords (E)-MesPdC(H)tBu (48% yield, 31P NMR
δ 227.1 ppm)12 and with benzophenone yields MesPdCPh2 (72%
yield, 31P NMR δ 234.0 ppm).13 Concomitant formation of
[(PNPiPr)LuO]x is likely, but to date, we have not been able to
ascertain the fate of the lutetium byproduct.
Attempts to disrupt the dimer and stabilize a terminal phosphin-
idene using Lewis bases were unsuccessful (PMe3, tmeda, DMAP,
or bipyridines) or resulted in decomposition (OdPMe3). Kinetic
stabilization was also explored using the sterically demanding
phosphine, Mes*PH2. Reaction of a toluene-d8 solution of 3 or 4
with Mes*PH2 at 80 °C for 7-12 h resulted in quantitative
formation of the phosphaindole 6 as determined by 31P NMR
spectroscopy (eq 1).
(5) (a) Fan, L.; Foxman, B. M.; Ozerov, O. V. Organometallics 2004, 23,
326-328. (b) Fan, L. Ph.D. Thesis, Brandeis University, 2006.
(6) For examples, see: (a) Tardif, O.; Nishiura, M.; Hou, Z. Tetrahedron
2003, 59, 10525-10539. (b) Cameron, T. M.; Gordon, J. C.; Scott, B. L.
Organometallics 2004, 23, 2995-3002. (c) Jantunen, K. C.; Scott, B. L.;
Hay, P. J.; Gordon, J. C.; Kiplinger, J. L. J. Am. Chem. Soc. 2006, 128,
6322-6323.
(7) Zhang, L.; Suzuki, T.; Luo, Y.; Nishiura, M.; Hou, Z. Angew. Chem., Int.
Ed. 2007, 46, 1909-1913.
(8) Shannon, R. D. Acta Cryst. 1976, A32, 751-767.
(9) Schumann, H.; Palamidis, E.; Schmid, G.; Boese, R. Angew. Chem., Int.
Ed. Engl. 1986, 25, 718-719.
(10) Cummins, C. C.; Schrock, R. R.; Davis, W. M. Angew. Chem., Int. Ed.
Engl. 1993, 32, 756-759.
(11) (a) Stephan, D. W. Angew. Chem., Int. Ed. 2000, 39, 314-329 and
references therein. (b) Breen, T. L.; Stephan, D. W. J. Am. Chem. Soc.
1995, 117, 11914-11921.
(12) Literature (C6D6) δ 228.4 ppm: Brym, M.; Jones, C.; Waugh, M.; Hey-
Hawkins, E.; Majoumo, F. New J. Chem. 2003, 27, 1614-1621.
(13) Literature (CDCl3) δ 233.06 ppm: Klebach, Th. C.; Lourens, R.;
Bickelhaupt, F. J. Am. Chem. Soc. 1978, 100, 4886-4888.
(14) For representative examples, see: (a) Champion, D. H.; Cowley, A. H.
Polyhedron 1985, 4, 1791-1792. (b) Amor, I.; Garcia, M. E.; Ruiz, M.
A.; Saez, D.; Hamidov, H.; Jeffery, J. C. Organometallics 2006, 25, 4897-
4869.
(15) Phosphaindole 6 has been made from Mes*PH2 using transition metal
catalysts. Zr: (a) Masuda, J. D.; Hoskin, A. J.; Graham, T. W.; Beddie,
C.; Fermin, M. C.; Etkin, N.; Stephan, D. W. Chem. Eur. J. 2006, 12,
8696-8707. Rh: (b) Bo¨hm, V. P. W.; Brookhart, M. Angew. Chem., Int.
Ed. 2001, 40, 4694-4696. (c) Stradiotto, M. Fujdala, K. L.; Tilley, T. D.
HelV. Chim. Acta 2001, 84, 2958-2970.
For transition metals, the production of 6 signals the generation of
a transient phosphinidene complex,1c,f which reacts with a C-H
bond on the Mes* ortho-tBu group to give the phosphaindole.14,15
JA7105306
9
J. AM. CHEM. SOC. VOL. 130, NO. 8, 2008 2409