Journal of the American Chemical Society
Communication
(2) (a) Amendt, M. A.; Chen, L.; Hillmyer, M. A. Macromolecules 2010,
43, 3924−3934. (b) García, J. M.; Jones, G. O.; Virwani, K.; McCloskey,
B. D.; Boday, D. J.; ter Huurne, G. M.; Horn, H. W.; Coady, D. J.;
Bintaleb, A. M.; Alabdulrahman, A. M. S.; Alsewailem, F.; Almegren, H.
A. A.; Hedrick, J. L. Science 2014, 344, 732−735. (c) Gardziella, A.;
Pilato, L.; Knop, A. Thermosets: Overview, Definitions, and
Comparisons. In Phenolic Resins; Springer: Berlin Heidelberg, 2000;
pp 109−121.
substrates. Given the fully aromatic structure, this is assigned to
the nitrogen-rich pyrazole cross-linking units.24 Finally, the
synthetic versatility of this new approach enables a range of
thermoset architectures to be obtained by simply changing the
molecular structure of the monomers. As shown in Figure 5,
(3) (a) Iqbal, M.; Norder, B.; Mendes, E.; Dingemans, T. J. J. Polym.
Sci., Part A: Polym. Chem. 2009, 47, 1368−1380. (b) Agag, T.; Takeichi,
T. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 1878−1888.
(4) (a) Sroog, C. E. Prog. Polym. Sci. 1991, 16, 561−694. (b) Ishida, H.
Chapter 1 - Overview and Historical Background of Polybenzoxazine
Research. In Handbook of Benzoxazine Resins; Agag, H. I., Ed.; Elsevier:
Amsterdam, 2011; pp 3−81. (c) Hergenrother, P. M. High Perform.
Polym. 2003, 15, 3−45. (d) Martin, S. J.; Godschalx, J. P.; Mills, M. E.;
Shaffer, E. O.; Townsend, P. H. Adv. Mater. 2000, 12, 1769−1778.
(5) (a) Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; Wiley: New
York, 1984. (b) Lutz, J.-F. Angew. Chem., Int. Ed. 2007, 46, 1018−1025.
(6) (a) Song, H. B.; Baranek, A.; Bowman, C. N. Polym. Chem. 2016, 7,
603−612. (b) Díaz, D. D.; Punna, S.; Holzer, P.; McPherson, A. K.;
Sharpless, K. B.; Fokin, V. V.; Finn, M. G. J. Polym. Sci., Part A: Polym.
Chem. 2004, 42, 4392−4403. (c) Wan, L.; Luo, Y.; Xue, L.; Tian, J.; Hu,
Y.; Qi, H.; Shen, X.; Huang, F.; Du, L.; Chen, X. J. Appl. Polym. Sci. 2007,
104, 1038−1042. (d) Ergin, M.; Kiskan, B.; Gacal, B.; Yagci, Y.
Macromolecules 2007, 40, 4724−4727.
(7) (a) Rode, V. V.; Bondarenko, Y. M.; D’Yachenko, A. V.; Krongauz,
Y. S.; Korshak, V. V. Polym. Sci. U.S.S.R. 1969, 11, 935−944.
(8) Reissig, H.-U.; Zimmer, R. Angew. Chem., Int. Ed. 2014, 53, 9708−
9710.
(9) Browne, D. L.; Harrity, J. P. A. Tetrahedron 2010, 66, 553−568.
(10) Lu, Y.; Arndtsen, B. A. Angew. Chem., Int. Ed. 2008, 47, 5430−
5433.
(11) Browne, D. L.; Vivat, J. F.; Plant, A.; Gomez-Bengoa, E.; Harrity, J.
P. A. J. Am. Chem. Soc. 2009, 131, 7762−7769.
(12) (a) Huisgen, R.; Grashey, R.; Gotthardt, H.; Schmidt, R. Angew.
Chem., Int. Ed. Engl. 1962, 1, 48−49. (b) Stille, J. K.; Bedford, M. A. J.
Polym. Sci., Part A-1: Polym. Chem. 1968, 6, 2331−2342. (c) Browne, D.
L.; Taylor, J. B.; Plant, A.; Harrity, J. P. A. J. Org. Chem. 2010, 75, 984−
987.
Figure 5. Expanding the sydnone−alkyne cross-linking strategy to
different monomers: Investigated monomer combinations to give
pyrazole-based thermosets and their respective Td5% values in air.
varying the combination of four readily accessible monomers
(see SI) allows the preparation of four different thermosets (TS
to TS-c), which all show exceptional heat resistance with Td5%
values exceeding 430 °C.
In summary, the highly efficient cycloaddition of bifunctional
sydnones with trifunctional alkynes represents a facile synthetic
approach to a new family of fully aromatic thermosets based on
pyrazole cross-linking units. Exceptionally high thermal and
mechanical performance clearly illustrates the successful trans-
lation of efficient cross-linking chemistry and functional group
stability to final material properties under standard processing
conditions. The availability of alternative monomers demon-
strates the potential of this tunable thermoset platform as a high
performance matrix for advanced technologies.
(13) Stille, J. K. Makromol. Chem. 1972, 154, 49−61.
(14) Intemann, J. J.; Huang, W.; Jin, Z.; Shi, Z.; Yang, X.; Yang, J.; Luo,
J.; Jen, A. K. Y. ACS Macro Lett. 2013, 2, 256−259.
(15) (a) Stille, J. K.; Bedford, M. A. J. Polym. Sci., Part B: Polym. Lett.
1966, 4, 329−331. (b) Stewart, F. H. C. Chem. Rev. 1964, 64, 129−147.
(c) Yashunskii, V. G.; Kholodov, L. E. Zh. Obshch. Khim. 1962, 32,
3661−5. (d) Asundaria, S. T.; Patel, K. C. J. Heterocyclic Chem. 2013, 50,
E136−E141.
(16) Foster, R. S.; Jakobi, H.; Harrity, J. P. A. Tetrahedron Lett. 2011,
52, 1506−1508.
(17) Spruell, J. M.; Wolffs, M.; Leibfarth, F. A.; Stahl, B. C.; Heo, J.;
Connal, L. A.; Hu, J.; Hawker, C. J. J. Am. Chem. Soc. 2011, 133, 16698−
16706.
(18) Agag, T.; Takeichi, T. Macromolecules 2003, 36, 6010−6017.
(19) Smith, J. G., Jr; Connell, J. W.; Hergenrother, P. M. Polymer 1997,
38, 4657−4665.
(20) Chang, H. C.; Lin, C. H.; Tian, Y. W.; Feng, Y. R.; Chan, L. H. J.
Polym. Sci., Part A: Polym. Chem. 2012, 50, 2201−2210.
(21) Feng, T.; Wang, J.; Wang, H.; Ramdani, N.; Zu, L.; Liu, W.; Xu, X.
Polym. Adv. Technol. 2015, 26, 581−588.
(22) Yokota, R.; Yamamoto, S.; Yano, S.; Sawaguchi, T.; Hasegawa, M.;
Yamaguchi, H.; Ozawa, H.; Sato, R. High Perform. Polym. 2001, 13, S61−
S72.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Detailed synthetic procedures and characterization data
for the new compounds and additional experimental
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Science Foundation (MRSEC program,
DMR 1121053) and the Mitsubishi Chemical Company
(Mitsubishi Chemical Center for Advanced Materials) for
financial support. We also thank Philip M. Carubia (Cornell
Center for Materials Research) for performing DMA and TMA
analysis.
(23) Wang, M. W.; Lin, C. H.; Juang, T. Y. Macromolecules 2013, 46,
8853−8863.
(24) Matos-Per
2012, 134, 9498−9505.
́
ez, C. R.; White, J. D.; Wilker, J. J. J. Am. Chem. Soc.
REFERENCES
(1) Meador, M. A. Annu. Rev. Mater. Sci. 1998, 28, 599−630.
■
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX