10.1002/chem.201901660
Chemistry - A European Journal
COMMUNICATION
and research on this topic is currently ongoing in our
laboratories.[5c]
exploration, validation and implementation of ‘Power-to-X’
concepts. We thank Khouloud Beydoun for preparing the cover
artwork and graphics. We also thank Umicore AG for a generous
gift of ruthenium precursor.
Keywords: molecular catalysis · carbon dioxide utilisation ·
catalytic hydrogenation · sustainable chemistry · green chemistry
[1]
[2]
a) J. Klankermayer, W. Leitner, Science 2015, 350, 629-30; b) J.
Klankermayer, W. Leitner, Phil. Trans. R. Soc., A 2016, 374, DOI:
10.1098/rsta.2015.0315; c) J. Klankermayer, S. Wesselbaum, K.
Beydoun, W. Leitner, Angew. Chem. Int. Ed. 2016, 55, 7296-343.
a) P. T. Anastas, J. C. Warner, Green chemistry : theory and practice,
Oxford University Press, Oxford [England]; New York, 1998; b) P.
Anastas, N. Eghbali, Chem. Soc. Rev. 2010, 39, 301-12.
[3]
[4]
B. G. Schieweck, J. Klankermayer, Angew. Chem. Int. Ed. 2017, 56,
10854-7.
a) K. Thenert, K. Beydoun, J. Wiesenthal, W. Leitner, J. Klankermayer,
Angew. Chem. Int. Ed. 2016, 55, 12266-9; b) K. Beydoun, J.
Klankermayer, in Organometallics for Green Catalysis (Eds.: P. H.
Dixneuf, J.-F. Soulé), Springer, Berlin, Heidelberg, 2018; c) M. Siebert,
M. Seibicke, A. F. Siegle, S. Kräh, O. Trapp, J. Am. Chem. Soc. 2019,
141, 334-41.
[5]
[6]
a) M. Meuresch, S. Westhues, W. Leitner, J. Klankermayer, Angew.
Chem. Int. Ed. 2016, 55, 1392-5; b) S. Westhues, M. Meuresch, J.
Klankermayer, Angew. Chem. Int. Ed. 2016, 55, 12841-4; c) S.
Westhues, J. Idel, J. Klankermayer, Science Advances 2018, 4.
a) H. Krüger, J. Rübner, W. Wittke, R. Gnauck, Acta Polym. 1986, 37,
601-3; b) E. Franta, E. Gérard, Y. Gnanou, L. Reibel, P. Rempp,
Makromol. Chem. 1990, 191, 1689-98; c) R. S. Velichkova, V. B.
Gancheva, H. Krüger, J. Rübner, J. Polym. Sci., Part A: Polym. Chem.
1990, 28, 3145-54; d) Y. Makabe, S. Okita, Y. Yamamoto, Toray
Industries, Inc., Japan, US5079330 A, 1992; e) C. G. Pitt, W. Hendren,
Amgen Inc., USA, US5476653 A, 1995; f) T. Zheng, Q. Zhou, Q. Li, L.
Zhang, H. Li, Y. Lin, Solid State Ionics 2014, 259, 9-13; g)
Figure 1. Bio-hybrid approach for incorporation of renewable energy in
processes with the combined utilisation of CO2 and bio-based carbon feedstock.
Experimental Section
General procedure for the synthesis of cyclic acetals (CA) and linear
[7]
[8]
a) M. J. Astle, J. A. Zaslowsky, P. G. Lafyatis, Ind. Eng. Chem. 1954, 46,
787-91; b) T. G. Bonner, D. Lewis, K. Rutter, J. Chem. Soc., Perkin
Trans. 1 1981, 1807-10.
acetals (LA) using diols, CO2 and H2:
A 2.0 mL solution of
[Ru(triphos)(tmm)] (0.002 g, 3 µmol) and Al(OTf)3 (0.012 g, 25 µmol) in
the selected diol was prepared under argon atmosphere in a Schlenk tube
containing a stirring bar. 1 mL of 1,4-dioxane is added to the solution.
After stirring for 5 minutes, the solution was transferred to a carefully
degassed and dried 20 mL stainless-steel autoclave. The autoclave was
pressurized at room temperature with 20 bar CO2 and then H2 was added
up to a total pressure of 80 bar. The reaction mixture was stirred with a
magnetic stir bar and heated to 80 °C using a preheated aluminum cone.
After 18 h the autoclave was cooled in an ice bath and then carefully
vented. Turnover numbers (TONs) of desired product in solution were
analyzed by 1H-NMR spectroscopy using mesitylene as internal standard
with an estimated error of 6%.
a) Q. Liu, Y. Liao, N. Shi, T. Wang, L. Ma, Q. Zhang, Chem. Ind. Eng.
Prog. 2013, 32, 1035-42; b) G. Centi, E. A. Quadrelli, S. Perathoner,
Energy Environ. Sci. 2013, 6, 1711-31; c) R. Schlögl, Angew. Chem. Int.
Ed. 2015, 54, 4436-9; d) X. Jin, J. Shen, W. Yan, M. Zhao, P. S. Thapa,
B. Subramaniam, R. V. Chaudhari, ACS Catalysis 2015, 5, 6545-58; e)
C. S. Spanjers, D. K. Schneiderman, J. Z. Wang, J. Wang, M. A.
Hillmyer, K. Zhang, P. J. Dauenhauer, Chemcatchem 2016, 8, 3031-5; f)
D. Sun, S. Sato, W. Ueda, A. Primo, H. Garcia, A. Corma, Green Chem.
2016, 18, 2579-97; g) H. Liu, Z. Huang, F. Zhao, F. Cui, X. Li, C. Xia, J.
Chen, Catal. Sci. Tecnol. 2016, 6, 668-71.
[9]
K. Beydoun, K. Thenert, E. S. Streng, S. Brosinski, W. Leitner, J.
Klankermayer, ChemCatChem 2016, 8, 135-8.
[10] S. Wesselbaum, V. Moha, M. Meuresch, S. Brosinski, K. M. Thenert, J.
Kothe, T. v. Stein, U. Englert, M. Hölscher, J. Klankermayer, W. Leitner,
Chem. Sci. 2015, 6, 693-704.
Acknowledgements
[11] M. B. Miller, D.-L. Chen, D. R. Luebke, J. K. Johnson, R. M. Enick, J.
Chem. Eng. Data 2011, 56, 1565-72.
This work was supported in part by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany´s Excellence Strategy – Exzellenzcluster 2186
„The Fuel Science Center“ ID: 390919832, and by the German
Federal Ministry of Education and Research (BMBF) within the
Kopernikus Project P2X: Flexible use of renewable resources –
[12] Y. Li, C. Topf, X. Cui, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2015,
54, 5196-200.
[13] S. Deutz, D. Bongartz, B. Heuser, A. Kätelhön, L. Schulze Langenhorst,
A. Omari, M. Walters, J. Klankermayer, W. Leitner, A. Mitsos, S.
Pischinger, A. Bardow, Energy Environ. Sci. 2018, 11, 331-43.
This article is protected by copyright. All rights reserved.