C O M M U N I C A T I O N S
Scheme 1. Proposed Catalytic Cycle
the efficiency by which substituted pyrroles may be synthesized.
Further investigations concerning the scope of the dinuclear zinc
complex are under way in our group.
Acknowledgment. We thank the National Science Foundation
and the National Institutes of Health (NIH-13598) for their generous
support of our programs. C.M. thanks the Deutscher Akademischer
Austausch Dienst (DAAD) for a postdoctoral fellowship.
Supporting Information Available: Experimental procedures and
characterization data for all new compounds. This material is available
References
(1) (a) Friedel, C.; Crafts, J. M. Hebd. Seances Acad. Sci. 1877, 84, 1392.
(b) Friedel, C.; Crafts, J. M. Hebd. Seances Acad. Sci. 1877, 84, 1450.
(2) For reviews of Friedel-Crafts alkylation reactions, see: (a) Olah, G. A.
Friedel-Crafts and Related Reactions; Wiley-Interscience: New York,
1964; Vol. II, Part 1. (b) Roberts, R. M.; Khalaf, A. A. Friedel-Crafts
Alkylation Chemistry A Century of DiscoVery; Dekker: New York, 1984.
(c) Olah, G. A.; Krishnamurit, R.; Prakash, G. K. S. Friedel-Crafts
Alkylations in ComprehensiVe Organic Synthesis; Pergamon Press: Ox-
ford, 1991.
(3) For recent reviews, see: (a) Bandini, M.; Emer, E.; Tommasi, S.; Umani-
Ronchi, A. Eur. J. Org. Chem. 2006, 3527-3544. (b) Bandini, M.;
Melloni, A.; Tommasi, S.; Umani-Ronchi, A. Synlett 2005, 1199-1222.
(c) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed.
2004, 43, 550-556. (d) Jorgensen, K. A. E. Synthesis 2003, 1117-1125.
(4) For recent examples, see: (a) Jia, Y. X.; Zhu, S. F.; Yang, Y.; Zhou, Q.
L. J. Org. Chem. 2006, 71, 75-80. (b) Li, H. M.; Wang, Y. Q.; Deng, L.
Org. Lett. 2006, 8, 4063-4065. (c) Herrera, R. P.; Sgarzani, V.; Bernardi,
L.; Ricci, A. Angew. Chem., Int. Ed. 2005, 44, 6576-6579.
(5) Few examples of unprotected pyrrole can be found in: (a) Blay, G.;
Ferna´ndez, I.; Pedro, J. R.; Vila, C. Org. Lett. 2007, 9, 2601-2604. (b)
Evans, D. A.; Fandrick, K. R.; Song, H. J.; Scheidt, K. A.; Xu, R. S. J.
Am. Chem. Soc. 2007, 129, 10029-10041. (c) Palomo, C.; Oiarbide, M.;
Kardak, B. G.; Garcia, J. M.; Linden, A. J. Am. Chem. Soc. 2005, 127,
4154-4155. (d) Zhuang, W.; Gathergood, N.; Hazell, R. G.; Jørgensen,
K. A. J. Org. Chem. 2001, 66, 1009-1013. (e) Paras, N. A.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2001, 123, 4370-4371.
(entries 13-16). We were pleased to observe that the MVK-derived
compound 14 and the phenylvinyl ketone-derived substrate 15 both
showed high stereoselectivities and yields in the conversion with
nitroalkene 7. In the case of nitroalkene 10 however, only pyrrole
15 gave good yields and selectivities (entry 16).
(6) For examples in synthesis, see: (a) Fu¨rstner, A.; Radkowski, K.; Peters,
H. Angew. Chem., Int. Ed. 2005, 44, 2777-2781. (b) Fu¨rstner, A. Angew.
Chem., Int. Ed. 2003, 42, 3582-3603. (c) Johnson, J. A.; Ning, L.; Sames,
D. J. Am. Chem. Soc. 2002, 124, 6900-6903.
(7) Baran, P. S.; Richter, J. M.; Lin, D. W. Angew. Chem., Int. Ed. 2005, 44,
609-612.
To rationalize the observed results, we propose a mechanism
that involves the deprotonation of pyrrole by precatalyst 1 ac-
companied by the formation of 1 equiv of ethane (Scheme 1). The
nitroalkene coordinates to this catalyst and undergoes the alkylation
reaction. The catalytic cycle is closed by a proton exchange with
an incoming pyrrole to release the product and reform the active
catalyst.
The absolute stereochemistry of the products was determined
by comparison with a literature known compound, 17.12 This was
accomplished by an oxidation-esterification procedure in analogy
to the oxidative cleavage-esterification of furans.13 In the first step,
pyrrole 16 was oxidized to the derived carboxylic acid, which then
was converted into the known methyl ester 17 (eq 2).
(8) For recent examples, see: (a) Larionov, O. V.; de Meijere, A. Angew.
Chem., Int. Ed. 2005, 44, 5664-5667. (b) Garg, N. K.; Caspi, D. D.;
Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 5970-5978. (c) Dhawan, R.;
Arndtsen, B. A. J. Am. Chem. Soc. 2004, 126, 468-469. (d) Donohoe, T.
J.; Sintim, H.; Sisangia, L.; Harling, J. D. Angew. Chem., Int. Ed. 2004,
43, 2293-2296.
(9) Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003-12004.
(10) For a review about Michael Additions to nitroalkenes, see: Berner, O.
M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 1877-1894. For
examples of Friedel-Crafts reactions of indoles with nitroalkenes, see:
(a) Bandini, M.; Garelli, A.; Rovinetti, M.; Tommasi, S.; Umani-Ronchi,
A. Chirality 2005, 17, 522-529. (b) Zhuang, W.; Hazell, R. G.; Jorgensen,
K. A. Org. Biomol. Chem. 2005, 3, 2566-2571. (c) Fleming, E. M.;
McCabe, T.; Connon, S. J. Tetrahedron Lett. 2006, 47, 7037-7042. (d)
Singh, P. K.; Bisai, A.; Singh, V. K. Tetrahedron Lett. 2007, 48, 1127-
1129. (e) Sui, Y.; Liu, L.; Zhao, J. L.; Wang, D.; Chen, Y. J. Tetrahedron
2007, 63, 5173-5183.
(11) For aldol reactions, see: (a) Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000,
122, 12003-12004. (b) Trost, B. M.; Ito, H.; Silcoff, E. R. J. Am. Chem.
Soc. 2001, 123, 3367-3368. (c) Trost, B. M.; Silcoff, E. R.; Ito, H. Org.
Lett. 2001, 3, 2497-2500. (d) Trost, B. M.; Fettes, A.; Shireman, B. T.
J. Am. Chem. Soc. 2004, 126, 2660-2661. (e) Trost, B. M.; Shin, S. H.;
Sclafani, J. A. J. Am. Chem. Soc. 2005, 127, 8602-8603. For Mannich
reactions, see: (f) Trost, B. M.; Terrell, L. R. J. Am. Chem. Soc. 2003,
125, 338-339. (g) Trost, B. M.; Jaratjaroonphong, J.; Reutrakul, V. J.
Am. Chem. Soc. 2006, 128, 2778-2779. For nitroaldol reactions, see: (h)
Trost, B. M.; Yeh, V. S. C. Angew. Chem., Int. Ed. 2002, 41, 861-863.
For desymmetrizations, see: (i) Trost, B. M.; Mino, T. J. Am. Chem.
Soc. 2003, 125, 2410-2411. For alkynylations of aldehydes, see: (j) Trost,
B. M.; Weiss, A. H.; von Wangelin, A. J. J. Am. Chem. Soc. 2006, 128,
8-9. For applications in natural product synthesis, see: (k) Trost, B. M.;
Yeh, V. S. C. Org. Lett. 2002, 4, 3513-3516. (l) Trost, B. M.; Yeh, V.
S. C.; Ito, H.; Bremeyer, N. Org. Lett. 2002, 4, 2621-2623. (m) Trost,
B. M.; Frederiksen, M. U.; Papillon, J. P. N.; Harrington, P. E.; Shin, S.;
Shireman, B. T. J. Am. Chem. Soc. 2005, 127, 3666-3667. (n) Trost, B.
M.; Weiss, A. H. Org. Lett. 2006, 8, 4461-4464.
By comparison of the optical rotation, the absolute stereochem-
istry of the prepared compound was thus determined to be of the
S-configuration. The catalytic cycle depicted in Scheme 1 also nicely
accounts for this absolute configuration.
In conclusion, we have demonstrated the use of dinuclear zinc
bis-ProPhenol complex 1 in an atom economic Friedel-Crafts
reaction of unprotected pyrroles with a variety of differently
substituted nitroalkenes to give both mono- and disubstituted
pyrroles. The reactions shown gave excellent stereoselectivities in
most cases. Tandem atom economic addition reactions to form 2,5-
disubstituted pyrroles were also demonstrated. Further the avoidance
of using N-protecting groups in pyrrole alkylations also enhances
(12) Liu, H.; Xu, J.; Du, D.-M. Org. Lett. 2007, 9, 4725-4728.
(13) The oxidation was reported for furans in: Kohler, F.; Gais, H.-J.; Raabe,
G. Org. Lett. 2007, 9, 1231.
JA711080Y
9
J. AM. CHEM. SOC. VOL. 130, NO. 8, 2008 2439