672
J. M. Langenhan et al. / Bioorg. Med. Chem. Lett. 18 (2008) 670–673
Thorson, J. S.; Hosted, T. J., Jr.; Jiang, J.; Biggins, J. B.;
Ahlert, J. Curr. Org. Chem. 2001, 5, 139.
3. Paula, S.; Tabet, M. R.; Ball, W. J., Jr. Biochemistry 2005,
44, 498.
4. (a) Stenkvist, B. Anti-Cancer Drugs 2001, 12, 635; (b)
Haux, J.; Klepp, O.; Spigset, O.; Tretli, S. BMC Cancer
2001, 1, 11.
5. Johansson, S.; Lindholm, P.; Gullbo, J.; Larsson, R.;
Bohlin, L.; Claeson, P. Anticancer Drugs 2001, 12, 475.
edge, this is the first observation of cell line selectivity
resulting from a simple alteration of glycosidic linkage.
This outcome is particularly important since NCI/
ADR-RES is a multi-drug resistant line that has high
levels of P-glycoprotein expression.19 While cardiac gly-
cosides are generally substrates for P-glycoprotein,21
such tumor specificity suggests that 3c and 3d may no
longer serve as P-glycoprotein substrates. Alternatively,
the i-PrON-glycosides may be interacting with a unique
cellular target. Supporting this notion, neoglycosides
have previously been shown to be significantly less po-
tent Na+/K+-ATPase inhibitors in HEK-239 human
embryonic kidney cells than digitoxin.14a Also, digitoxin
itself can target cellular components in addition to Na+/
K+-ATPase21 such as the TNF-a/NF-jB signaling path-
way, a regulator of inflammation responses relevant to
cancer therapy.22 Neoglycosides 3a–c and 4a–c were
more potent cytotoxins than the corresponding aglycons
(2a–c), confirming the importance of sugar attachments
to the cytotoxicity of cardiac neoglycosides (data not
shown).
´
´
6. Lopez-Lazaro, M.; Pastor, N.; Azrak, N.; Ayuso, M. J.;
´
Austin, C. A.; Cortes, F. J. Nat. Prod. 2005, 68, 1642.
7. (a) Haux, J. Medical Hypotheses 2002, 59, 781; (b) Yeh, J.
Y.; Huang, W. J.; Kan, S. F.; Wang, P. S. J. Urol. 2001,
166, 1937.
8. For a flexible synthetic approach that provides ready
access to mono- and disaccharide analogs see: (a) Zhou,
M.; O’Doherty, G. A. J. Org. Chem. 2007, 72, 2485; (b)
Zhou, M.; O’Doherty, G. A. Org. Lett. 2006, 8, 4339; (c)
Zhou, M.; O’Doherty, G. A. Org. Lett. 2006, 8, 5677.
9. (a) Thibodeaux, C. J.; Melancon, C. E.; Liu, H.-W. Nature
2007, 446, 1008; (b) Blanchard, S.; Thorson, J. S. Curr.
Opin. Chem. Biol. 2006, 10, 263; (c) Langenhan, J. M.;
Griffith, B. R.; Thorson, J. S. J. Nat. Prod. 2005, 68, 1696;
(d) Griffith, B. R.; Langenhan, J. M.; Thorson, J. S. Curr.
Opin. Biotechnol. 2005, 16, 622.
10. Langenhan, J. M.; Thorson, J. S. Curr. Org. Synth. 2005,
2, 59, and references cited therein.
11. Peri, F.; Dumy, P.; Mutter, M. Tetrahedron 1998, 54,
12269.
12. (a) Carrasco, M. R.; Brown, R. T.; Doan, V. H.; Kandel,
S. M.; Lee, F. C. Biopolymers 2006, 84, 414; (b) Carrasco,
M. R.; Brown, R. T. J. Org. Chem. 2003, 68, 8853; (c)
Carrasco, M. R.; Brown, R. T.; Serafimova, I. M.; Silva,
O. J. Org. Chem. 2003, 68, 195; (d) Carrasco, M. R.;
Nguyen, M. J.; Burnell, D. R.; MacLaren, M. D.; Hengel,
S. M. Tetrahedron Lett. 2002, 43, 5727.
In summary, we harnessed a mild, chemoselective reac-
tion between oxyamines and unprotected, unactivated
reducing sugars to construct for the first time a panel
of linkage-diversified neoglycosides. This modestly-sized
panel of digitoxin analogs included selective tumor cyto-
toxins, validating linkage diversification through neogly-
cosylation as a unique and simple strategy to powerfully
complement existing methods for the optimization of
glycoconjugates.
13. (a) Peri, F.; Nicotra, F. Chem. Comm. 2004, 623; (b) Peri,
F.; Jimenez-Barbero, J.; Garcia-Aparicio, V.; Tvaroska, I.;
Nicotra, F. Chem. Eur. J. 2004, 10, 1433.
Acknowledgments
We thank Noe¨l Peters (Keck-UWCCC Small Molecule
Screening Facility) for performing cytotoxicity assays,
Gary Girdaukus (UW-Madison School of Pharmacy
Analytical Facility) for performing LC–MS, and P.J.
Alaimo for helpful discussions. The research was sup-
ported by the Camille and Henry Dreyfus Foundation,
the Research Corporation, and Seattle University.
14. (a) Langenhan, J. M.; Peters, N. R.; Guzei, I. A.;
Hoffman, F. M.; Thorson, J. S. Proc. Natl. Acad. Sci.
2005, 102, 12305; (b) Ahmed, A.; Peters, N. R.; Fitzgerald,
M. K.; Watson, J. A., Jr.; Hoffmann, F. M.; Thorson, J. S.
J. Am. Chem. Soc. 2006, 128, 14224; (c) Griffith, B. R.;
Krepel, C.; Fu, X.; Blanchard, S.; Ahmed, A.; Edmiston,
C. E.; Thorson, J. S. J. Am. Chem. Soc. 2007, 129, 8150.
15. The distribution of pyranose, and sometimes furanose,
anomers in these glycosides is dependent on sugar identity,
but usually a single isomer predominates (see Ref. 14a).
16. Example procedure: Digitoxigenone (see Ref. 14a) (1.82 g,
4.89 mmol) was dissolved in methanol (11 mL, 2.2 mL/
mmol) and pyridine (0.87 mL, 10.8 mmol). Methoxyamine
hydrochloride (0.653 g, 7.82 mmol) was added, and the
solution was stirred for 2.5 h and then concentrated. The
resulting residue was dissolved in CH2Cl2 and washed with
1 M HCl, brine, dried over MgSO4, filtered, and then
concentrated. The mixture of oxime diastereomers was
suspended in ethanol (7 mL, 0.7 mL/mmol) and cooled to
0 °C. Borane tert-butylamine complex (1.40 g, 16.2 mmol)
was added, followed by the dropwise addition of 10% aq
HCl (13.2 mL, 2.7 mL/mmol). The reaction mixture was
stirred at 0 °C for 2.5 h. After this time, Na2CO3 was
added until gas evolution ceased, and the mixture was
partitioned between water and CHCl3. The organic layer
was washed with brine, dried over MgSO4, filtered, and
concentrated. The resulting diastereomeric mixture was
purified by SiO2 column chromatography eluting with 3:2
EtOAc/hexane to elute 2a (TLC Rf = 0.33 in 3:2 EtOAc/
Supplementary data
Supplementary data associated with this article can be
References and notes
1. (a) Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291,
2357; (b) Prescher, J. A.; Dube, D. H.; Bertozzi, C. R.
Nature 2004, 430, 873; (c) Sawa, M.; Hsu, T.-L.; Itoh, T.;
Sugiyama, M.; Hanson, S. R.; Vogt, P. K.; Wong, C.-H.
Proc. Natl. Acad. Sci. 2006, 103, 12371; (d) van Kasteren,
S. I.; Kramer, H. B.; Jensen, H. H.; Campbell, S. J.;
Kirkpatrick, J.; Oldham, N. J.; Anthony, D. C.; Davis, B.
G. Nature 2007, 446, 1105.
2. (a) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70,
461; (b) Clardy, J.; Walsh, C. Nature 2004, 432, 829; (c)
1
hexane). H NMR (CDCl3, 400 MHz) d 5.88 (s, 1H), 4.99