610 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 3
Dukat et al.
(8) Glennon, R. A.; Lee, M.; Rangisetty, J. B.; Dukat, M.; Roth, B. L.;
Savage, J. E.; McBride, A.; Rauser, L.; Hufesien, L.; Lee, D. K. H.
2-Substituted tryptamines: Agents with selectivity for 5-HT6 serotonin
receptors. J. Med. Chem. 2000, 43, 1011–1018.
(9) Tsai, Y.; Dukat, M.; Slassi, A.; MacLean, N.; Demchyshyn, L.; Savage,
J. E.; Roth, B. L.; Hufesein, S.; Lee, M.; Glennon, R. A. N1-
(Benzenesulfonyl)tryptamines as novel 5-HT6 antagonists. Bioorg.
Med. Chem. Lett. 2000, 10, 2295–2299.
(10) (a) Woolley, M. L.; Marsden, C. A.; Fone, K. C. F. 5-ht6 Receptors.
Curr. Drug Targets: CNS Neurol. Disord. 2004, 3, 59–79. (b) Holenz,
J.; Pauwels, P. J.; Diaz, J. L.; Merce, R.; Codony, X.; Buschmann, H.
Medicinal chemistry strategies to 5-HT6 ligands as potential cognitive
enhancers and antiobesity agents. Drug DiscoVery Today 2006, 11,
283–299.
(11) Ballesteros, J. A.; Weinstaein, H. Integrated methods for the construc-
tion of three-dimentsional models and computational probing of
structure-function relations in G protein coupled receptors. Methods
Neurosci. 1995, 25, 366–428.
(12) Boess, F. G.; Monsma, F. J.; Sleight, A. J. Identification of residues
in transmembrane regions III and IV that contribute to the ligand
binding site of the serotonin 5-HT6 receptor. J. Neurochem. 1998, 71,
2169–2177.
(13) Boess, F. G.; Monsma, F. J.; Meyer, V.; Zwingelstein, C.; Sleight,
A. J. Interaction of tryptamine and ergoline compounds with threonine
196 in the ligand binding site of the 5-hydroxytryptamine6 receptor.
Mol. Pharmacol. 1997, 52, 515–523.
(14) Bromidge, S. M. Potent and selective 5-HT6 receptor antagonists. Spec.
Publ.sR. Soc. Chem. 2001, 264, 101–119.
(15) Lopez-Rodriguez, M. L.; Benhamu, B.; de la Fuente, T.; Sanz, A.;
Pardo, L.; Campillo, M. A three-dimensional pharmacophore model
for 5-hydroxytryptamine6 (5-HT6) receptor antagonists. J. Med. Chem.
2005, 48, 4216–4219.
flip. A total of 10 genetic algorithm docking runs were performed
for each ligand structure. The ChemScore fitness function (an
estimation of the total free energy change that occurs on ligand
binding) was used to rank the docked ligand–receptor complexes.
Based on the resulting ChemScores, one of the 100 MODELER-
generated receptor models was selected for each ligand. Two such
receptors were consistently identified: one being common to ligands
lacking the sulfonamide group and another common to ligands
containing a sulfonamide moiety.
The PROTABLE facility within SYBYL and the PROCHECK
program were employed to identify potential, unusual, and sterically
unfavorable side chain geometries; these were iteratively corrected
as necessary.
All receptor/ligand complexes were subjected to short molecular
dynamics simulations using the DYNAMICS routine within
SYBYL to provide additional evidence that the GOLD-docked
poses were not artifactual (i.e., to assess the stability of the bound
pose of the ligands in the h5-HT6 receptor models). Molecular
dynamics simulations were carried out for 100 ps and snapshots
were taken every 25 fs. Otherwise, the default settings for the
DYNAMICS were employed. The energy setup was analogous to
that described for energy minimization. To maintain the integrity
of the ligand–receptor complexes, all residues except the ligand
and amino acids within an 8 Å radius of the ligand were maintained
as an aggregate; these atoms did not move during the course of the
simulation.
Acknowledgment. This work was supported, in part, by
NIMH grant MH-60599 (R.A.G.), the A. D. Williams Fund
(R.A.G.), the School of Pharmacy, Medical College of Virginia,
Virginia Commonwealth University, MH-57635 (B.L.R.), and
the NIMH Psychoactive Drug Screening Program (B.L.R.). R.K.
was supported by T32 grant DA 007027.
(16) Hirst, W. D.; Minton, J. A.; Bromidge, S. M.; Moss, S. F.; Latter,
A. J.; Riley, G.; Routledge, C.; Middlemiss, D. N.; Price, G. W.
Characterization of [125I]-SB-258585 binding to human recombinant
and native 5-HT6 receptors in rat, pig and human brain tissue. Br. J.
Pharmacol. 2000, 130, 1597–1605.
(17) Pullagurla, M. R.; Westkaemper, R. B.; Glennon, R. A. Possible
differences in modes of agonist and antagonist binding at human 5-HT6
receptors. Bioorg. Med. Chem. Lett. 2004, 14, 4569–4573.
(18) Kolanos, R.; Dukat, M.; Roth, B. L.; Glennon, R. A. Interaction of
N1-unsubstituted and N1-benzenesulfonyltryptamines at h5-HT6 recep-
tors. Bioorg. Med. Chem. Lett. 2006, 16, 5832–5835.
(19) Nyandege, A.; Kolanos, R.; Roth, B. L.; Glennon, R. A. Further studies
on the binding of N1-substituted tryptamines at h5-HT6 receptors.
Bioorg. Med. Chem. Lett. 2007, 17, 1691–1694.
(20) Gether, U. Uncovering molecular mechanisms involved in activation
of G protein-coupled receptors. Endocr. ReV. 2000, 21, 90–113.
(21) Pullagurla, M. R.; Dukat, M.; Setola, V.; Roth, B.; Glennon, R. A.
N1-Benzenesulfonylgramine and N1-benzenesulfonylskatole: Novel
5-HT6 receptor ligand templates. Bioorg. Med. Chem. Lett. 2003, 13,
3355–3359.
(22) Abate, C.; Kolanos, R.; Dukat, M.; Setola, V.; Roth, B. L.; Glennon,
R. A. Interaction of chiral MS-245 analogs at 5-HT6 receptors. Bioorg.
Med. Chem. Lett. 2005, 15, 3510–3513.
(23) (a) Grauert M.; Merz H.; Mierau, J.; Schingnitz, G.; Schneider, C.
Neue 2,5-Diaminotetraline, Verfahren zu ihrer Herstellung und ihrer
Venwendung als Arzneimittel, EP 402923 A2, June 13, 1990. (b)
Grauert, M.; Merz, H.; Mierau, J.; Schingnitz, G.; Schneider, C.
Methods of treating disorders of the dopaminergic system using 2,5-
diaminotetralines, US005196454 A, March 23, 1993.
(24) Dillard, R. D.; Bach, N. J.; Draheim, S. E.; Berry, D. R.; Carlson,
D. G.; Chirgadze, N. Y.; Clawson, D. K.; Hartley, L. W.; Johnson,
L. M.; Jones, N. D.; McKinney, E. R.; Mihelich, E. D.; Olkowski,
J. L.; Schevitz, R. W.; Smith, A. C.; Snyder, D. W.; Sommers, C. D.;
Wert, J.-P. Indole ihibitors of human nonpancreatic secretory phos-
pholipase A2. 1. Indole-3-acetamides. J. Med. Chem. 1996, 39, 5119–
5136.
(25) Macor, J. E.; Chenard, B. L.; Post, R. J. Use of 2,5-dimethylpyrrole
as an amino-protecting group in an efficient synthesis of 5-amino-3-
[(N-methylpyrrolidin-2(R)-yl)methyl]indole. J. Org. Chem. 1994, 59,
7496–7498.
Supporting Information Available: A table showing the root-
mean-square distances (RMSD) between the heavy atoms of
corresponding residues in the binding pocket of the two selected
receptor models [i.e., binding models for 5-HT (1) and MS-245
(4a), as shown in Figure 1; Table S1] and of amino acids within
various distances (in 0.5 Å distance increments from 3.0 to 5.0 Å)
of the docked ligands (Table S2). This material is available free of
References
(1) Glennon, R. A.; Dukat, M. Serotonin receptors and drugs affecting
serotonergic neurotransmission. In Foye’s Principles of Medicinal
Chemistry; Williams, D. A., Lemke, T. L., Eds.; Lippincott Williams
and Wilkins: Philadelphia, 2002; pp 315–337.
(2) Kroeze, W. K.; Kristiansen, K.; Roth, B. L. Molecular biology of
serotonin receptors structure and function at the molecular level. Curr.
Top. Med. Chem. 2002, 2, 507–528.
(3) Kohen, R.; Metcalf, M. A.; Khan, N.; Druck, T.; Huebner, K.;
Lachowicz, J. E.; Meltzer, H. Y.; Sibley, D. R.; Roth, B. L.; Hamblin,
M. W. Cloning, characterization, and chromosomal localization of a
human 5-HT6 serotonin receptor. J. Neurochem. 1996, 66, 47–56.
(4) Glennon, R. A. Higher-end serotonin receptors: 5-HT5, 5-HT6, and
5-HT7. J. Med. Chem. 2003, 46, 2795–2812.
(5) Roth, B. L.; Craigo, S. C.; Choudhary, M. S.; Uluer, A.; Monsma,
F. J., Jr.; Shen, Y.; Meltzer, H. Y.; Sibley, D. R. Binding of typical
and atypical antipsychotic agents to 5-hydroxytryptamine-6 and
5-hydroxytryptamine-7 receptors. J. Pharmacol. Exp. Ther. 1994, 268,
1403–1410.
(6) Sleight, A. J.; Boess, F. G.; Bös, M.; Levet-Trafit, B.; Riemer, C.;
Bourson, A. Characterization of Ro 04-6790 and Ro 63-0563: Potent
and selective antagonists at human and rat 5-HT6 receptors. Br. J.
Pharmacol. 1998, 124, 556–562.
(7) Bromidge, S. M.; Brown, A. M.; Clarke, S. E.; Dodgson, K.; Gager,
T.; Grassam, H. L.; Jeffrey, P. M.; Joiner, G. F.; King, F. D.;
Middlemiss, D. N.; Moss, S. F.; Newman, H.; Riley, G.; Routledge,
C.; Wyman, P. 5-Chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-
methyl-2-benzothiophenesulfonamide (SB-271046): A potent, selec-
tive, and orally bioavailable 5-HT6 receptor antagonist. J. Med. Chem.
1999, 42, 202–205.
(26) Reese, C. B. Process for the preparation of oligodeoxyribonucleotide
phosphorothioate triesters via coupling reaction PCT Int. Appl.
2001064702, September 7, 2001.
(27) Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor,
R. D. Improved protein-ligand docking using GOLD. Proteins 2003,
52, 609–623.
(28) Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee,
R. P. Empirical scoring functions: I. The development of a fast
empirical scoring function to estimate the binding affinity of ligands
in receptor complexes. J. Comput.-Aided Mol. Des. 1997, 11, 425–
445.