A R T I C L E S
Shibata et al.
Table 1. Reaction Conditions for 1,4-Diene-ynes
mechanistic considerations and synthetic transformation of the
products.12
Results and Discussion
Reaction of 1,4-Diene-ynes. In a previous communication,12
we examined various 1,4-diene-ynes using a chiral Rh catalyst
at 60 °C in 1,2-dichloroethane (DCE). For example, the reaction
of dienyne 1a with a substituent at the 2-position of the 1,4-
diene moiety gave expected tricyclic compound 2a with two
quaternary carbon stereocenters in almost perfect enantioselec-
tivity (Table 1, entry 1).13 On the other hand, dienyne 1b with
no substituent at that position gave unexpected bicyclic com-
pound 3b with a quaternary carbon stereocenter at the ring-
fused position, also with excellent enantiomeric excess (entry
2).14 To facilitate the reaction, the same reactions were examined
using 1,5-cyclooctadiene (COD)-free Rh catalyst, which was
prepared from [Rh(cod)2]BF4 and (S)-tolBINAP, and pretreated
with hydrogen gas to exclude COD before use (entries 3 and
4). Dienynes 1a and 1b were completely consumed at room
temperature within 24 h, and comparable yield and enantiose-
entry
R
dienyne
temp/
°
C
time/h
yield/%
ee/%b
1
Me
H
Me
H
1a
1b
1a
1b
60
60
rt
48
12
24
24
81 (2a)
91 (3b)
88 (2a)
92 (3b)
>99
99
>99
>99
2
3a
4a
rt
a The catalyst was used after exclusion of COD. b The enantiomeric
excess was determined by HPLC analysis using a Daicel chiral column
(OJ-H for 2a and 3b).
lectivity were achieved. We chose these reaction conditions for
further investigation (henceforth, the catalyst, which was
prepared using the procedure mentioned above, is referred to
as “chiral Rh cat.”).
(2) Rh: (a) Grigg, R.; Scott, R.; Stevenson, P. J. Chem. Soc., Perkin Trans. 1
1988, 1357-1364. (b) Ojima, I.; Vu, A. T.; McCullagh, J. V.; Kinoshita,
A. J. Am. Chem. Soc. 1999, 121, 3230-3231. (c) Witulski, B.; Alayrac,
C. Angew. Chem., Int. Ed. 2002, 41, 3281-3284. (d) Kinoshita, H.;
Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 2003, 125, 7784-7785. Ni:
(e) Bhatarah, P.; Smith, E. H. J. Chem. Soc., Perkin Trans. 1 1992, 2163-
2168. Pd: (f) Negishi, E.; Harring, L. S.; Owczarczyk, Z.; Mohamud, M.
M.; Ay, M. Tetrahedron Lett. 1992, 33, 3253-3256. (g) Yamamoto, Y.;
Nagata, A.; Arikawa, Y.; Tatsumi, K.; Itoh, K. Organometallics 2000, 19,
2403-2405. (h) Yamamoto, Y.; Nagata, A.; Nagata, H.; Ando, Y.; Arikawa,
Y.; Tatsumi, K.; Itoh, K. Chem.-Eur. J. 2003, 9, 2469-2483. (i) Pla-
Quintana, A.; Roglans, A.; Torrent, A. Organometallics 2004, 23, 2762-
2767. Ru: (j) Peters, J.-U.; Blechert, S. Chem. Commun. 1997, 1983-
1984. (k) Hoven, G. B.; Efskind, J.; Rømming, C.; Undheim, K. J. Org.
Chem. 2002, 67, 2459-2463. (l) Yamamoto, Y.; Arakawa, T.; Ogawa, R.;
Itoh, K. J. Am. Chem. Soc. 2003, 125, 12143-12160. Co: (m) Stara´,
I. G.; Stary´, I.; Kolla´rovicˇ, A.; Teply´, F.; Sˇaman, D.; Tichy´, M. J. Org.
Chem. 1998, 63, 4046-4050. (n) Son, S. U.; Paik, S.-J.; Lee, S. I.; Chung,
Y. K. J. Chem. Soc., Perkin Trans. 1 2000, 141-143. (o) Sugihara, T.;
Wakabayashi, A.; Nagai, Y.; Takao, H.; Imagawa, H.; Nishizawa, M. Chem.
Commun. 2002, 576-577. (p) Teply´, F.; Stara´, I. G.; Stary´, I.; Kolla´rovicˇ,
A.; Sˇaman, D.; Vyskocˇil, Sˇ.; Fiedler, P. J. Org. Chem. 2003, 68, 5193-
5197. Mo: (q) Nishida, M.; Shiga, H.; Mori, M. J. Org. Chem. 1998, 63,
8606-8608. Fe: (r) Saino, N.; Kogure, D.; Okamoto, S. Org. Lett. 2005,
7, 3065-3067. (s) Saino, N.; Kogure, D.; Kase, K.; Okamoto, S. J.
Organomet. Chem. 2006, 691, 3129-3136.
Mechanistic Study. The proposed mechanism for different
products depending upon the substituents at the 1,4-diene moiety
of dienynes is depicted in Scheme 3. Oxidative coupling of the
metal complex to the 1,6-enyne moiety of dienyne gives
metallacyclopentene A as a common intermediate.15 Steric
repulsion between R2 and the bulky chiral ligand (Ln) on the
metal probably controls the direction of intramolecular olefin
insertion: when R2 is not a hydrogen atom, olefin moiety inserts
in a direction where R2 is distant from the metal center to give
metallacycle B, and subsequent reductive elimination gives
tricyclic compound 2. On the other hand, when R2 is a hydrogen
atom, the olefin inserts in another direction to give metallacycle
C. Subsequent â-hydrogen elimination and reductive elimination
give bicyclic compound 3 with a methyl group at the ring-fusion
carbon atom.
To elucidate the mechanism mentioned above, we examined
the cycloaddition of deuterated 1,4-diene-yne 1b-D under the
same reaction conditions (eq 1): bicyclic product 3b-D, which
has two deuterated vinylic protons and a monodeuterated methyl
group, was obtained, and almost perfect incorporation of the
deuteriums was ascertained. These results strongly support the
notion that this mechanism includes â-hydrogen elimination and
completely exclude the possibility that it includes the intramo-
lecular [4 + 2] cycloaddition of 1,3-diene-yne along with
carbon-carbon double bond isomerizations.16
(3) Stara´, I. G.; Stary´, I.; Kolla´rovicˇ, A.; Teply´, F.; Vyskocˇil, Sˇ.; Sˇaman, D.
Tetrahedron Lett. 1999, 40, 1993-1996.
(4) Shibata, T.; Tsuchikama, K.; Otsuka, M. Tetrahedron: Asymmetry 2006,
17, 614-619.
(5) Tanaka, K.; Sagae, H.; Toyoda, K.; Noguchi, K.; Hirano, M. J. Am. Chem.
Soc. 2007, 129, 1522-1523.
(6) Carbonylative carbocyclization of enediynes was already reported: (a)
Ojima, I.; Lee, S.-Y. J. Am. Chem. Soc. 2000, 122, 2385-2386. (b)
Bennacer, B.; Fujiwara, M.; Lee, S.-Y.; Ojima, I. J. Am. Chem. Soc. 2005,
127, 17756-17767.
(7) (a) Montgomery, J.; Seo, J. Tetrahedron 1998, 54, 1131-1144. (b)
Slowinski, F.; Aubert, C.; Malacria, M. Tetrahedron Lett. 1999, 40, 5849-
5852. (c) Slowinski, F.; Aubert, C.; Malacria, M. AdV. Synth. Catal. 2001,
343, 64-67. (d) Slowinski, F.; Aubert, C.; Malacria, M. J. Org. Chem.
2003, 68, 378-386.
(8) Tanaka, D.; Sato, Y.; Mori, M. J. Am. Chem. Soc. 2007, 129, 7730-7731.
(9) Yamamoto, Y.; Kuwabara, S.; Ando, Y.; Nagata, H.; Nishiyama, H.; Itoh,
K. J. Org. Chem. 2004, 69, 6697-6705.
(10) (a) Shibata, T.; Kurokawa, H.; Kanda, K. J. Org. Chem. 2007, 72, 6521-
6525. (b) Tanaka, K.; Nishida, G.; Sagae, H.; Hirano, M. Synlett 2007,
1426-1430.
(11) Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis;
Christoffers, J., Baro, A., Eds.; Wiley-VCH: Weinheim, Germany, 2005.
(12) A preliminary communication: Shibata, T.; Tahara, Y. J. Am. Chem. Soc.
2006, 128, 11766-11767.
(13) The absolute configuration of phenyl-substituted tricyclic compound 2 (R
) Ph) was already determined by X-ray measurements (ref 12). That of
2a (R ) Me) could be speculatively assigned because the first metallacycle
formation step, where chirality is generated, is common (A in Scheme 3).
(14) Compound 3b was already obtained in enantioselective [2 + 2 + 2]
cycloaddition of 1,6-enyne and acetylene (ref 14a), and its absolute
configuration was speculatively assigned by the comparison of that of a
related compound in a related reaction (ref 14b): (a) Shibata, T.; Arai, Y.;
Tahara, Y. Org. Lett. 2005, 7, 4955-4957. (b) Evans, P. A.; Lai, K. W.;
Sawyer, J. R. J. Am. Chem. Soc. 2005, 127, 12466-12467.
(15) Bicyclic metallacyclopentene is a common intermediate to the present
reaction and intramolecular Pauson-Khand-type reaction of enynes.
Actually, the absolute configuration of the asymmetric carbon atom at the
ring-fusion carbon atom is the same when Rh-(S)-BINAP derivative
catalysts were used: (a) Jeong, N.; Sung, B. K.; Choi, Y. K. J. Am. Chem.
Soc. 2000, 122, 6771-6772. (b) Shibata, T.; Toshida, N.; Takagi, K. J.
Org. Chem. 2002, 68, 7446-7450.
9
3452 J. AM. CHEM. SOC. VOL. 130, NO. 11, 2008