C O M M U N I C A T I O N S
reported for 1 (1.408 and 1.656, respectively), support the presence
of a BdB double bond in 3c despite its ca. 0.1 Å boron-boron
elongation and trans-bent geometry. The distortion exhibited by
3c does not decrease the boron-boron bond order substantially and
supports the dictum “the electronic structure, rather than bond
distances, determines the nature of multiple bonds”.30
The experimental realization of three distinct polymorphic
structures of diborene 3 may be attributed to a combination of,
inter alia, packing effects in the crystal, crystallizing-solvent
polarity, and intramolecular ligand steric effects.
Figure 2. Representation of the frontier orbitals of trans-bent 3c.
than that of the corresponding B-B single bond of 4 (1.795(5) Å),
but it is about 0.1 Å longer than those in 1 (1.560(18) Å, av), in
dianionic (tetraamino)diborates7 (1.566(9) to 1.59(1) Å), and in
OC(H)BdB(H)CO (1.590 Å, computed).12 Notably, the BdB bond
distance of 3c is only about 0.05 Å longer than in [Mes2BB-
(Mes)Ph]2- (1.636(11) Å)5 and [{Ph(Me2N)BB(NMe2)Ph}]2- (1.627
Å, av).6 Each boron atom in 3c is pyramidal with a 344.3° bond
angle sum. As far as we are aware, 3c is the first example of
pyramidal tricoordinate boron in an acyclic environment. The cyclic
silaborirane, CH2SiH2BH,24 and its analogs have been computed
to have pyramidal geometries due to heteroatom-boron p orbital
interactions. Constrained systems like 1-boraadamantane25 neces-
sarily have nonplanar boron geometries.
In contrast to the trans-bent structure of 3c, isomer 3a possesses
the same planar C(H)BdB(H)C core as observed in 1.18 Each boron
atom in 3b (Figure 1) also has a planar tricoordinate environment.
However, 3b adopts a twisted geometry with a 18.1° dihedral angle
between the two CBH planes. The BdB double bond distance of
3b (1.582(4) Å) is similar to those of 1 (1.560(18) Å (av)) and 3a
(1.602(5) Å). Remarkably, the BdB bond distance in the crystal
structure of 3c (1.679(9) Å) is about 0.1 Å longer. The boron-
boron double bond character of 3 is further supported by the
πBdB-π*BdB absorption (λmax ) 574 nm).
Acknowledgment. We are grateful to the National Science
Foundation (Grants CHE-0209857, CHE-0451445, and CHE-
0608142) for support.
Supporting Information Available: Full details of the syntheses,
computations, and X-ray crystal determination, including the cif files.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Cowley, A. H. J. Organomet. Chem. 2004, 689, 3866-3872.
(2) Zhou, M.; Tsumori, N.; Li, Z.; Fan, K.; Andrews, L.; Xu, Q. J. Am. Chem.
Soc. 2002, 124, 12936-12937.
(3) Maier, C.-J.; Pritzkow, H.; Siebert, W. Angew. Chem., Int. Ed. 1999, 38,
1666-1668.
(4) Kaufmann, E.; Schleyer, P. v. R. Inorg. Chem. 1988, 27, 3987-3992.
(5) Moezzi, A.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1992,
114, 2715-2717.
(6) Moezzi, A.; Bartlett, R. A.; Power, P. P. Angew. Chem., Int. Ed. 1992,
104, 1082-1083.
(7) Noth, H.; Knizek, J.; Ponikwar, W. Eur. J. Inorg. Chem. 1999, 1931-
1937.
(8) Dill, J. D.; Schleyer, P. v. R.; Pople, J. A. J. Am. Chem. Soc. 1975, 97,
3402-3409.
(9) Knight, L. B., Jr.; Kerr, K.; Miller, P. K.; Arrington, C. A. J. Phys. Chem.
1995, 99, 16842-16848.
The B3LYP/6-311+G** DFT optimization of 3c,19 starting with
the X-ray coordinates, led to a planar geometry and a BdB bond
distance of 1.605 Å, essentially identical with the experimental value
(1.602(5) Å) of planar 3a. The polymorphism exhibited by 3 may
be attributed to the combination of a number of factors including
(1) the flat potential energy surface; (2) the packing effects in
crystals;26,27 (3) the polarity of the solvent used for crystallization;
and (4) the intramolecular steric repulsion of the carbene ligands.
The different packing patterns of 3a-c suggest that the associated
distinct packing effects may contribute to the stabilization of these
polymorphs.18 Differences in solvent polarity are known to
significantly affect conformational isomerism of molecular28 and
supramolecular29 systems. Indeed, 3a and 3b were isolated from
1:5 Et2O/hexane solvent mixtures, whereas 3c was crystallized from
pure Et2O. Compared to the more sterically demanding ligands in
1, the smaller ligands in 3 can adjust their orientations more easily
to packing forces.
Our numerous computations19 employing simplified ligand
models R′′(H)BdB(H)R′′ (R′′ ) :C(NRCH)2, with R ) H or CH3)
confirmed the flatness of the potential energy surface. The planar
3a models had C2h symmetry. The Ci models for trans-bent 3c
optimized to the same C2h geometries. The only minimum (in C2
symmetry) corresponding to 3b (R ) CH3) had a small planarization
barrier. Consequently, the X-ray coordinates of 3c were used for
the MO model shown in Figure 2. Boron-boron π-bonding
dominates the HOMO, while the HOMO-1 has mixed B-B and
B-H σ bonding character (Figure 2). The Wiberg (1.445) and
NLMO/NPA (1.515) B-B bond indices, comparable to those
(10) Wu, H.-S.; Jiao, H.; Wang, Z.-X.; Schleyer, P. v. R. J. Am. Chem. Soc.
2003, 125, 4428-4429.
(11) Wu, H.-S.; Qin, X.-F.; Xu, X.-H.; Jiao, H.; Schleyer, P. v. R. J. Am. Chem.
Soc. 2005, 127, 2334-2338.
(12) Wang, Z.-X.; Chen, Z.; Jiao, H.; Schleyer, P. v. R. J. Theor. Comput.
Chem. 2005, 4, 669-688.
(13) Qin, X.-F.; Wu, H.-S.; Jiao, H. J. Mol. Struct. 2007, 810, 135-141.
(14) Qin, X.-F.; Wu, H.-S.; Jiao, H. J. Mol. Model. 2007, 13, 927-935.
(15) Scott, N. M.; Nolan, S. P. Eur. J. Inorg. Chem. 2005, 1815-1828.
(16) Arduengo, A. J., III Acc. Chem. Res. 1999, 32, 913-921.
(17) Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie, Y.; King, R. B.;
Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem.
Soc. 2007, 129, 12412-12413.
(18) See the Supporting Information for synthetic and crystallographic details.
(19) Computations: The DFT calculations of 3 and 3c were performed at the
B3LYP/6-311+G** level with the Gaussian 03 program (computational
details are in the Supporting Information): Frisch, M. J.; et al. Gaussian
03, reVision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
(20) Bridgeman, A. J.; Nielsen, N. A. Inorg. Chim. Acta 2000, 303, 107-115.
(21) Bouhadir, G.; Bourissou, D. Chem. Soc. ReV. 2004, 33, 210-217.
(22) Bernstein, J. Polymorphism in Molecular Crystals; Oxford University
Press: Oxford, U.K., 2002.
(23) Power, P. P. J. Chem. Soc., Dalton Trans. 1998, 2939-2951.
(24) Giju, K. T.; Phukan, A. K.; Jemmis, E. D. Angew. Chem., Int. Ed. 2003,
42, 539-542.
(25) Wrackmeyer, B.; Milius, W.; Tok, O. L.; Bubnov, Y. N. Chem. Eur. J.
2002, 8, 1537-1543.
(26) Steed, J. W.; Atwood, J. L. Supramolecular Chemistry, 1st ed.; John Wiley
& Sons, Ltd.: Chichester, U.K., 2000.
(27) Steed, J. W. In Frontiers in Crystal Engineering, 1st ed.; Tiekink, E. R.
T., Vittal, J., Eds.; John Wiley & Sons, Ltd.: Chichester, U.K., 2006; pp
67-90.
(28) Kitamura, M.; Gao, G.; Nakajima, K.; Takahashi, T. Chem. Lett. 2002,
1076-1077.
(29) Huang, X.-C.; Zhang, J.-P.; Lin, Y.-Y.; Chen, X.-M. Chem. Commun.
2005, 2232-2234.
(30) Xie, Y.; Grev, R. S.; Gu, J.; Schaefer, H. F.; Schleyer, P. v. R.; Su, J.; Li,
X.-W.; Robinson, G. H. J. Am. Chem. Soc. 1998, 120, 3773-3780.
JA800257J
9
J. AM. CHEM. SOC. VOL. 130, NO. 11, 2008 3299