Notes and references
1 J. M. Takacs, P. M. Hrvatin, J. M. Atkins, D. S. Reddy and J. L. Clark,
New J. Chem., 2005, 29, 263–265; J. M. Takacs, D. S. Reddy,
S. A. Moteki, D. Wu and H. Palencia, J. Am. Chem. Soc., 2004, 126,
4494–4495; J. M. Takacs, K. Chaiseeda, S. A. Moteki, D. S. Reddy,
D. Wu and K. Chandra, Pure Appl. Chem., 2006, 78, 501–509.
2 (a) M. J. Weister, P. A. Ulmann and C. A. Mirkin, Angew. Chem., Int.
Ed., 2011, 50, 114–137; (b) S. Carboni, C. Gennari, L. Pignataro and
U. Piarulli, Dalton Trans., 2011, 40, 4355–4373; (c) J. Meeuwissen and
J. N. H. Reek, Nat. Chem., 2010, 2, 615–621; (d) G. Gasparini,
M. D. Molin and L. J. Prins, Eur. J. Org. Chem., 2010, 2429–2440;
(e) P. W. N. M. van Leeuwen, Supramolecular Catalysis, Wiley-VCH,
Weinhem, 2008; (f) S. J. Reyes and K. Burgess, Chem. Soc. Rev., 2006,
35, 416–423; (g) B. Breit, Angew. Chem., Int. Ed., 2005, 44, 6816–6825;
(h) E. A. Karakhanov, A. L. Maksimiov and E. A. Runova,
Russ. Chem. Rev., 2005, 74, 97–111.
3 J. Wieland and B. Breit, Nat. Chem., 2010, 2, 832–837.
4 J. M. Brown and R. J. Deeth, Angew. Chem., Int. Ed., 2009, 48,
4476–4479, and references cited therein.
5 Reviews: A. M. Carroll, T. P. O’Sullivan and P. J. Guiry, Adv.
Synth. Catal., 2005, 347, 609–631; C. M. Vogels and S. A. Westcott,
Curr. Org. Chem., 2005, 9, 687–699; C. M. Crudden and
D. Edwards, Eur. J. Org. Chem., 2003, 4695–4712; I. Beletskaya
and A. Pelter, Tetrahedron, 1997, 53, 4957–5026; K. Burgess and
M. J. Ohlmeyer, Chem. Rev., 1991, 91, 1179–1191.
6 A previous study on the CAHB of ortho-substituted styrenes showed
the effectiveness of ligand/catalyst scaffold optimization. See:
S. A. Moteki and J. M. Takacs, Angew. Chem., Int. Ed., 2008, 47,
894–896. The two-step optimization protocol described herein has
subsequently been used to further improve catalyst performance.
7 For recent examples of catalyzed hydroborations of 1,3-dienes, see:
R. J. Ely and J. P. Morken, J. Am. Chem. Soc., 2010, 132,
2534–2535; Y. Sasaki, C. Zhong, M. Sawamura and H. Ito,
J. Am. Chem. Soc., 2010, 132, 1226–1227; J. Y. Wu, B. Morequ
and T. Ritter, J. Am. Chem. Soc., 2009, 131, 12915–12917.
8 For recent examples of enantioselective b-borations of a,b-unsaturated
carbonyls, see: A. Guzman-Martinez and A. H. Hoveyda, J. Am.
Chem. Soc., 2010, 132, 10634–10637; I. Chen, M. Kanai and
M. Shibasaki, Org. Lett., 2010, 12, 4098–4101; D. Noh, H. Chea,
J. Ju and J. Yun, Angew. Chem., Int. Ed., 2009, 48, 6062–6064.
9 For recent examples of enantioselective diboration, see: C. H. Schuster,
B. Li and J. P. Morken, Angew. Chem., Int. Ed., 2011, 50, 7906–7909;
L. T. Kliman, S. N. Mlynarski and J. P. Morken, J. Am. Chem. Soc.,
2009, 131, 13210–13211; H. E. Burks and J. P. Morken,
Chem. Commun., 2007, 4717–4725 and references cited therein.
10 D. L. Sandrock, L. Jean-Gerard, C.-Y. Chen, S. D. Dreher and
G. A. Molander, J. Am. Chem. Soc., 2010, 132, 17108–17110;
T. Ohmura, T. Awano and M. Suginome, J. Am. Chem. Soc., 2010,
132, 13191–13192; A. Ros and V. K. Aggarwal, Angew. Chem., Int.
Ed., 2009, 48, 6289–6292; D. Imao, B. W. Glasspoole,
V. S. Laberge and C. M. Crudden, J. Am. Chem. Soc., 2009,
131, 5024–5025; C. M. Crudden, B. W. Glasspoole and C. J. Lata,
Chem. Commun., 2009, 6704–6716 and references cited therein.
11 For CAHB of 3a in as high as 91% ee, see: S. Demay, F. Volant
and P. Knochel, Angew. Chem., Int. Ed., 2001, 40, 1235–1238.
12 The efficiency, regioselectivity and enantioselectivity of vinyl arene
CAHB are thought to depend upon both steric and electronic
influences of aryl substituents, see: A. M. Segarra, E. Daura-Oller,
C. Claver, J. M. Poblet, C. Bo and E. Fernandez, Chem.–Eur. J.,
2004, 10, 6456–6467; D. R. Edwards, Y. B. Hleba, C. J. Lata,
L. A. Calhoun and C. M. Crudden, Angew. Chem., Int. Ed., 2007,
46, 7799–7802; A. C. Maxwella, S. P. Flanagana, R. Goddard and
P. J. Guiry, Tetrahedron: Asymmetry, 2010, 21, 1458–1473 and
references therein.
Fig. 4 Modeled structure of the cis-[Zn(SBc,RBc)Rh(cod)]+ complex.
in going from the free SAL, Zn(SBc,RAc), to the rhodium
complex, [Zn(SBc,RAc)Rh(nbd)]BF4.
The rhodium complex of Zn(SBc,RCc) (Table 2, entry 10),
while not as efficient as the Zn(SBc,RBc) catalyst, is amenable to
structural characterization. HRFAB mass spectrometry finds a
peak at 2363.8108 m/z, consistent with the heterobimetallic
complex, [Zn(SBc,RCc)Rh(nbd)]BF4 (calculated 2363.8009 m/z).
The 31P NMR spectrum of the complex is simple and clean,
exhibiting peaks at 107.7 and 113.6 ppm with Rh–P couplings of
249 and 254 Hz, respectively, and P–P coupling of 38.8 Hz.
DFT calculations at the B3LYP/6-31G (non-metal atoms) and
B3LYP/LanL2DZ (metal atoms) levels were carried out to explore
the possible conformations of cis-[Zn(SBc,RBc)Rh(cod)]+. Fig. 4
presents the predicted most stable conformer from among several
possible configurations (see ESIz). Its structure gives some
preliminary indications of ways in which the ligand/catalyst
scaffold and ligating group substituents influence the topography
around rhodium.
In summary, a series of SALs, each bearing the parent
TADDOL-derived ligating group, was used in the CAHB of
five meta-substituted styrenes varying in steric and electronic
character. The results show that enantioselectivity as a function
of catalyst scaffold varies similarly for all five substrates. This
suggests that enantioselectivity is not strongly correlated with the
nature of the substituent in this series. Scaffolds incorporating
tethers A and B prove to be among the most efficient catalysts.
These were further optimized by varying the aryl substituents on
the TADDOL moiety. In some cases, the most efficient catalyst
combines two different ligating groups in the SAL. Overall,
systematic changes in the structures of the scaffold and ligating
groups permit fine tuning of the supramolecular catalyst to
achieve high regioselectivity (95–98%) and high enantioselectivity
(94–97% ee) across the series of five substrates, 3a–e. The results
rival or exceed the best selectivity previously reported for
each substrate. Computational modelling gives a picture of the
presumed 1 : 1 chelated structure and provides a starting point for
probing structure activity relationships in future studies.
13 D. Seebach, A. K. Beck and A. Heckel, Angew. Chem., Int. Ed.,
2001, 40, 92–138.
14 N. Harada and K. Nakanishi, Circular Dichroic Spectroscopy.
Exciton Coupling in Organic Stereochemistry, University Science
Books, Mill Valley, CA, 1983.
15 A similar peak is seen in the CD upon the addition of Rh(nbd)2BF4
to (TADDOL)POPh in 1 : 2 stoichiometry.
16 I. Akritopoulou-Zanze, K. Nakanishi, H. Stepowska, B. Grzeszczyk,
A. Zamojski and N. Berova, Chirality, 1997, 9, 699–712.
Financial support for this research from the NSF
(CHE-0809637) is gratefully acknowledged. We thank A. Vidol
(ICREA) for preliminary studies modeling the CD spectra,
N. C. Thacker for assistance in the preparation of this manu-
script, the NSF (CHE-0091975, MRI-0079750) and NIH
(SIG-1-510-RR-06307) for the NMR spectrometers used in these
studies carried out in facilities renovated under NIH RR016544.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 263–265 265