2146 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 7
Cappelli et al.
Sweet, C. S.; Emmert, S. E.; Patchett, A. A.; Greenlee, W. J. Potent,
Orally Active Imidazo[4,5-b]pyridine-Based Angiotensin II Receptor
Antagonists. J. Med. Chem. 1991, 34, 2919–2922. (b) Kim, D.; Mantlo,
N. B.; Chang, R. S.; Kivlighn, S. D.; Greenlee, W. J. Evaluation of
Heterocyclic Acid Equivalents as Tetrazole Replacements in Imida-
zopyridine-Based Nonpeptide Angiotensin II Receptor Antagonists.
Bioorg. Med. Chem. Lett. 1994, 4, 41–44.
(13) (a) Chang, R. S. L.; Siegl, P. K. S.; Clineschmidt, B. W.; Mantlo,
N. B.; Chakravarty, P. K.; Greenlee, W. J.; Patchett, A. A.; Lotti,
V. J. In Vitro Pharmacology of L-158,809, a New Highly Potent and
Selective Angiotensin II Receptor Antagonists. J. Pharmacol. Exp.
Ther. 1992, 262, 133–138. (b) Robertoson, M. J.; Cunoosamy, M. P.;
Clark, K. L. Effects of Peptidase Inhibition on Angiotensin Receptor
Agonist and Antagonist Potency in Rabbit Isolated Thoracic Aorta.
Br. J. Pharmacol. 1992, 106, 166–172.
(14) (a) Artursson, P. Epithelial Transport of Drugs in Cell Culture. I: A
Model for Studying the Passive Diffusion of Drugs over Intestinal
Absorbtive (Caco-2) Cells. J. Pharm. Sci. 1990, 79, 476–482. (b)
Artursson, P.; Karlsson, J. Correlation between Oral Drug Absorption
in Humans and Apparent Drug Permeability Coefficients in Human
Intestinal Epithelial (Caco-2) Cells. Biochem. Biophys. Res. Commun.
1991, 175, 880–885.
(15) Ribadeneira, M. D.; Aungst, B. J.; Eyermann, C. J.; Huang, S.-M.
Effects of Structural Modifications on the Intestinal Permeability of
Angiotensin II Receptor Antagonists and the Correlation of In Vitro,
In Situ, and In Vivo Absorption. Pharm. Res. 1996, 13, 227–233.
(16) Takezako, T.; Gogonea, C.; Saad, Y.; Noda, K.; Karnik, S. S. “Network
Leaning” as a Mechanism of Insurmountable Antagonism of the
Angiotensin II Type 1 Receptor by Non-peptide Antagonists. J. Biol.
Chem. 2004, 279, 15248–15257.
(17) (a) The marketed AT1 receptor antagonists show limited oral bio-
availability (e. g. eprosartan 13%, valsartan 25%, losartan 33%,
candesartan 42%, telmisartan 50%, irbesartan 60–80%. Israili, Z. H.
Clinical Pharmacokinetics of Angiotensin II (AT1) Receptor Blockers
in Hypertension. J. Hum. Hypertens. 2000, 14 (1), S73–86. (b)
Brunner, H. R. The New Angiotensin II Receptor Antagonist,
Irbesartan. Am. J. Hypertens. 1997, 10, 311S–317S. (c) Moreover,
losartan exhibiting highly variable oral bioavailability is transported
by P-glycoprotein, while its carboxylic acid metabolite is not a
P-glycoprotein substrate; see: Soldner, A.; Benet, L. Z.; Mutschler,
E.; Christians, U. Active Transport of the Angiotensin-II Antagonist
Losartan and its Main Metabolite EXP 3174 Across MDCK-MDR1
and Caco-2 Cell Monolayers. Br. J. Pharmacol. 2000, 129, 1235–
1243.
(19) (a) Comparative studies on the UDP-glucuronosyltransferase-dependent
metabolism showed that intrinsic clearance (CLintrinsic ) Vmax/Km) of
compound 4b is 7-fold higher than that shown by 2a (Valoti, M.
Personal communication). Interestingly, other authors reported that
the absence of 2a glucuronide in the hepatocyte and its presence in
the bile suggest that its rate of formation is much slower than that of
transport out of the cell [see: Colletti, A. E.; Krieter, P. A. Disposition
of Angiotensin II Receptor Antagonist L-158,809 in Rats and Rhesus
Monkeys. Drug Metab. Dispos. 1994, 22, 183–188. (b) Huskey, S. W.;
Miller, R. R.; Chiu, S.-H. L. N-Glucuronidation Reactions. I. Tetrazole
N-Glucuronidation of Selected Angiotensin II Receptor Antagonists
in Hepatic Microsome from Rats, Dogs, Monkeys, and Humans. Drug
Metab. Dispos. 1993, 21, 792–799, and references cited therein].
(20) Vauquelin, G.; Van Liefde, I.; Birzbier, B. B.; Vanderheyden, P. M. L.
New Insights in Insurmountable Antagonism. Fund. Clin. Pharmacol.
2002, 16, 263–272.
(21) Sheldrick, G. M. SHELXS-97, Rel. 97-2, A Program for Automatic
Solution of Crystal Structures, Gottingen University, 1997.
(22) Sheldrick, G. M. SHELXL-97, Rel. 97-2, A Program for Crystal
Structure Refinement, Gottingen University, 1997.
(23) De Lean, K. W.; Munson, P. J.; Rodbard, D. Simultaneous Analysis
of Families of Sigmoidal Curves: Application to Bioassay, Radioligand
Assay and Physiological Dose-Response Curves. Am. J. Physiol. 1978,
235, E97–E102.
(5) Adams, M. A.; Trudeau, L. Irbesartan: Review of Pharmacology and
Comparative Properties. Can. J. Clin. Pharmacol. 2000, 7, 22–31.
(6) Chakravarty, P. K. Antihypertensive Agents. Exp. Opin. Ther. Pat.
1995, 5, 431–458.
(7) Cappelli, A.; Pericot Mohr, G.; Gallelli, A.; Rizzo, M.; Anzini, M.;
Vomero, S.; Mennuni, L.; Ferrari, F.; Makovec, F.; Menziani, M. C.;
De Benedetti, P. G.; Giorgi, G. Design, Synthesis, Structural Studies,
Biological Evaluation, and Computational Simulations of Novel Potent
AT1 Angiotensin II Receptor Antagonists Based on the 4-Phenylquino-
line Structure. J. Med. Chem. 2004, 47, 2574–2586.
(8) (a) Rizzo, M.; Anzini, M.; Cappelli, A.; Vomero, S.; Ventrice, D.;
De Sarro, G.; Procopio, S.; Costa, N.; Makovec, F. Determination of
a Novel Angiotensin-AT1 Antagonist CR3210 in Biological Samples
by HPLC. Farmaco 2003, 58, 837–844. (b) Rizzo, M.; Ventrice, D.;
Monforte, F.; Procopio, S.; De Sarro, G.; Anzini, M.; Cappelli, A.;
Makovec, F. Sensitive SPE-HPLC Method to Determine a Novel
Angiotensin-AT1 Antagonist in Biological Samples. J. Pharm. Biomed.
Anal. 2004, 35, 321–329. (c) Cappelli, A.; Pericot Mohr, G.; Giuliani,
G.; Galeazzi, S.; Anzini, M.; Mennuni, L.; Ferrari, F.; Makovec, F.;
Kleinrath, E. M.; Langer, T.; Valoti, M.; Giorgi, G.; Vomero, S. Further
Studies on Imidazo[4,5-b]pyridine AT1 Angiotensin II Receptor
Antagonists. Effects of the Transformation of the 4-Phenylquinoline
Backbone into 4-Phenylisoquinolinone or 1-Phenylindene Scaffolds.
J. Med. Chem. 2006, 49, 6451–6464.
(9) (a) While this work was in progress, a series of potent AT1 receptor
antagonists based on the pyrazolidine-3,5-dione structure was
reported. Le Bourdonnec, B.; Meulon, E.; Yous, S.; Goossens, J.-F.;
Houssin, R.; Hénichart, J.-P. Synthesis and Pharmacological Evaluation
of New Pyrazolidine-3,5-diones as AT1 Angiotensin II Receptor
Antagonists. J. Med. Chem. 2000, 43, 2685–2697. (b) Le Bourdonnec,
B.; Cauvin, C.; Meulon, E.; Yous, S.; Goossens, J.-F.; Durant, F.;
Houssin, R.; Hénichart, J.-P. Comparison of 3D Structures and AT1
Binding Properties of Pyrazolidine-3,5-diones and Tetrahydropy-
ridazine-3,6-diones with Parent Antihypertensive Drug Irbesartan.
J. Med. Chem. 2002, 45, 4794–4798.
(10) Carini, D. J.; Duncia, J. V.; Aldrich, P. E.; Chiu, A. T.; Johnson, A. L.;
Pierce, M. E.; Price, W. A.; Santella, J. B.; Wells, G. J.; Wexler, R. R.;
Wong, P. C.; Yoo, S.-E.; Timmermans, P. B. M. W. M. Nonpeptide
Angiotensin II Receptor Antagonists: The Discovery of a Series of
N-(Biphenylmethyl)imidazoles as Potent, Orally Active Antihyper-
tensives. J. Med. Chem. 1991, 34, 2525–2547.
(11) Anzini, M.; Cappelli, A.; Vomero, S.; Giorgi, G.; Langer, T.; Bruni,
G.; Romeo, M. R.; Basile, A. S. Molecular Basis of Peripheral vs
Central Benzodiazepine Receptor Selectivity in a New Class of
Peripheral Benzodiazepine Receptor Ligands Related to Alpidem.
J. Med. Chem. 1996, 39, 4275–4284.
(12) (a) Larsen, R. D.; King, A. O.; Chen, C. Y.; Corley, E. G.; Foster,
B. S.; Roberts, F. E.; Yang, C.; Lieberman, D. R.; Reamer, R. A.;
Tschaen, D. M.; Verhoeven, T. R.; Reider, P. J.; Lo, Y. S.; Rossano,
L. T.; Bookes, A. S.; Meloni, D.; Moore, J. R.; Arnett, J. F. Efficient
Synthesis of Losartan, A Nonpeptide Angiotensin II Receptor An-
tagonist. J. Org. Chem. 1994, 59, 6391–6394. (b) Smith, G. B.;
Dezeny, G. C.; Hughes, D. L.; King, A. O.; Verhoeven, T. R.
Mechanistic Studies of the Suzuki Cross-Coupling Reaction. J. Org.
Chem. 1994, 59, 8151–8156.
JM7011563