Journal of the American Chemical Society
Communication
E.; Benet-Buchholz, J.; Grushin, V. V. J. Am. Chem. Soc. 2011, 133,
20901.
study, we can easily convert 14 to 15 in 62% yield. Notably,
compound 15 is a trifluoromethylated derivative of an
Alzheimer’s drug (Aricept) precursor19 that was previously
made by Nagib and MacMillan6e through photoredox catalysis.
In summary, we have developed a copper-promoted
Sandmeyer trifluoromethylation reaction for the conversion of
aromatic amines to trifluoromethylated arenes and heteroarenes.
This new reaction is operationally simple and can be conducted
under very mild conditions. A variety of synthetically important
functional groups are well-tolerated. Thus, we expect that the
new reaction can be used for the rapid generation of
trifluoromethylated derivatives of biologically active molecules.
To reduce the cost of the reaction further, our next challenge will
be the search for less expensive trifluoromethylating agents for
the Sandmeyer process.
(5) (a) Chu, L.; Qing, F. L. Org. Lett. 2010, 12, 5060. (b) Senecal, T. D.;
Parsons, A. T.; Buchwald, S. L. J. Org. Chem. 2011, 76, 1174. (c) Zhang,
C.-P.; Zhou, C.-B.; Wang, X.-P.; Zheng, X.; Gu, Y.-C.; Xiao, J.-C. Chem.
Commun. 2011, 47, 9516. (d) Liu, T.; Shen, Q. Org. Lett. 2011, 13, 2342.
(e) Khan, B. A.; Buba, A. E.; Gooßen, L. J. Chem.Eur. J. 2012, 18,
1577. (f) Novak, P.; Lishchynskyi, A.; Grushin, V. V. Angew. Chem., Int.
Ed. 2012, 51, 7767. (g) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012,
134, 9034. (h) Ye, Y.; Kunzi, S. A.; Sanford, M. S. Org. Lett. 2012, 14,
̈
4979. (i) Xu, J.; Xiao, B.; Xie, C.-Q.; Luo, D.-F.; Liu, L.; Fu, Y. Angew.
Chem., Int. Ed. 2012, 51, 12551. (j) Zhao, Y.; Hu, J. Angew. Chem., Int. Ed.
2012, 51, 1033. (k) Li, Y.; Wu, L.; Neumann, H.; Beller, M. Chem.
Commun. 2013, 49, 2628.
(6) (a) Ye, Y.; Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc.
2010, 132, 14682. (b) Wang, X.; Truesdale, L.; Yu, J.-Q. J. Am. Chem.
Soc. 2010, 132, 3648. (c) Mu, X.; Chen, S.; Zhen, X.; Liu, G. Chem.
Eur. J. 2011, 17, 6039. (d) Loy, R. N.; Sanford, M. S. Org. Lett. 2011, 13,
2548. (e) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
(f) Litvinas, N. D.; Fier, P. S.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012,
51, 536. (g) Liu, T.; Shao, X.; Wu, Y.; Shen, Q. Angew. Chem., Int. Ed.
2012, 51, 540. (h) Chu, L.; Qing, F.-L. J. Am. Chem. Soc. 2012, 134, 1298.
(i) Xu, J.; Fu, Y.; Luo, D.-F.; Jiang, Y.-Y.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.;
Liu, L. J. Am. Chem. Soc. 2011, 133, 15300.
(7) For reviews of the Sandmeyer reaction, see: (a) Hodgson, H. H.
Chem. Rev. 1947, 40, 251. (b) Galli, C. Chem. Rev. 1988, 88, 765.
(c) Merkushev, E. B. Synthesis 1988, 923.
(8) (a) Evans, D. A.; Katz, J. L.; Peterson, G. S.; Hintermann, T. J. Am.
Chem. Soc. 2001, 123, 12411. (b) Vergne, C.; Bois-Choussy, M.; Zhu, J.
Synlett 1998, 1159. (c) Beletskaya, I. P.; Sigeev, A. S.; Peregudov, A. S.;
Petrovskii, P. V. Synthesis 2007, 2534.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental details and characterization data. This material is
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
(9) Dugave, C. J. Org. Chem. 1995, 60, 601.
ACKNOWLEDGMENTS
■
(10) (a) Hanson, P.; Jones, J. R.; Taylor, A. B.; Walton, P. H.; Timms,
A. W. J. Chem. Soc., Perkin Trans. 2 2002, 1135. (b) Cohen, T.; Dietz, A.
G., Jr.; Miser, J. R. J. Org. Chem. 1977, 42, 2053.
(11) (a) Clarke, H. T.; Read, R. R. Org. Synth. 1941, 514. (b) Hanson,
P.; Rowell, S. C.; Taylor, A. B.; Walton, P. H.; Timms, A. W. J. Chem.
Soc., Perkin Trans. 2 2002, 1126.
We thank the National Basic Research Program of China (973
Program) (2012CB215306), the “863” Program of the Ministry
of Science and Technology (2012AA02A700), the NNSFC
(20972148), CAS (KJCX2-EW-J02), and the China Postdoc-
toral Science Foundation (2011M500289, 2012T50078) for
support.
(12) Smith, P. A. S.; Brown, B. B. J. Am. Chem. Soc. 1951, 73, 2438.
(13) (a) Mo, F.; Jiang, Y.; Qiu, D.; Zhang, Y.; Wang, J. Angew. Chem.,
Int. Ed. 2010, 49, 1846. (b) Zhu, C.; Yamane, M. Org. Lett. 2012, 14,
4560. (c) Zhang, J.; Wang, X.; Yu, H.; Ye, J. Synlett 2012, 23, 1394.
(14) (a) He, Z.; Luo, T.; Hu, M.; Cao, Y.; Hu, J. Angew. Chem., Int. Ed.
2012, 51, 3944. (b) Cho, E. J.; Buchwald, S. L. Org. Lett. 2011, 13, 6552.
(15) The aryl radical derived from 6a cyclizes with a rate constant of
1010 s−1. Thus, if the Sandmeyer trifluoromethylation reaction occurs
through an aryl radical, then cyclized product 7a should be observed.
See: Annunziata, A.; Galli, C.; Marinelli, M.; Pau, T. Eur. J. Org. Chem.
2001, 1323.
(16) For examples of radical trifluoromethylation, see: (a) Nagib, D.
A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 10875.
(b) Li, Y.; Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8221. (c) Parsons,
A. T.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 9120. (d) Parsons,
A. T.; Senecal, T. D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2012, 51,
2947. (e) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang,
J. J. Am. Chem. Soc. 2011, 133, 16410. (f) Shimizu, R.; Egami, H.;
Hamashima, Y.; Sodeoka, M. Angew. Chem., Int. Ed. 2012, 51, 4577.
REFERENCES
■
(1) (a) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432. (b) Muller,
K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(2) (a) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (b) Kirk, K. L.
Org. Process Res. Dev. 2008, 12, 305. (c) Purser, S.; Moore, P. R.;
Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(d) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(e) Ye, Y.; Sanford, M. S. Synlett 2012, 23, 2005. (f) Furuya, T.; Kamlet,
A. S.; Ritter, T. Nature 2011, 473, 470. (g) Wu, X.-F.; Neumann, H.;
Beller, M. Chem.Asian J. 2012, 7, 1744. (h) Studer, A. Angew. Chem.,
Int. Ed. 2012, 51, 8950.
(3) (a) Swarts, F. Bull. Acad. R. Belg. 1892, 24, 309. (b) Boswell, G. A.,
Jr.; Ripka, W. C.; Scribner, R. M.; Tullock, C. W. Org. React. 1974, 21, 1.
(4) (a) Dubinina, G. G.; Ogikubo, J.; Vicic, D. A. Organometallics 2008,
27, 6233. (b) Dubinina, G. G.; Furutachi, H.; Vicic, D. A. J. Am. Chem.
Soc. 2008, 130, 8600. (c) Oishi, M.; Kondo, H.; Amii, H. Chem.
Commun. 2009, 1909. (d) Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am.
Chem. Soc. 2010, 132, 2878. (e) Cho, E. J.; Senecal, T. D.; Kinzel, T.;
Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679.
(f) McReynolds, K. A.; Lewis, R. S.; Ackerman, L. K. G.; Dubinina, G.
G.; Brennessel, W. W.; Vicic, D. A. J. Fluorine Chem. 2010, 131, 1108.
(g) Janson, P. G.; Ghoneim, I.; Ilchenko, N. O.; Szabo,
2012, 14, 2882.
́
K. J. Org. Lett.
(17) Bertolini, G.; Aquino, M.; Biffi, M.; d’Atri, G.; Di Pierro, F.;
Ferrario, F.; Mascagni, F.; Zaliani, A.; Leoni, F. J. Med. Chem. 1997, 40,
2011.
(18) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.;
Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci. U.S.A. 2011, 108,
14411.
(19) (a) Elati, C. R.; Kolla, N.; Chalamala, S. R.; Vankawala, P. J.;
Sundaram, V.; Vurimidi, H.; Mathad, V. T. Synth. Commun. 2006, 36,
169. (b) Rao, R. J. R.; Rao, A. K. S. B.; Murthy, Y. L. N. Synth. Commun.
2007, 37, 2847.
(g) Knauber, T.; Arikan, F.; Roschenthaler, G.-V.; Gooßen, L. J.
̈
Chem.Eur. J. 2011, 17, 2689. (h) Xu, J.; Luo, D. F.; Xiao, B.; Liu, J.;
Gong, T. J.; Fu, Y.; Liu, L. Chem. Commun. 2011, 47, 4300. (i) Zhang, C.
P.; Wang, Z. L.; Chen, Q. Y.; Zhang, C. T.; Gu, Y. C.; Xiao, J.-C. Angew.
Chem., Int. Ed. 2011, 50, 1896. (j) Tomashenko, O. A.; Escudero, E. C.;
Belmonte, M. M.; Grushin, V. V. Angew. Chem., Int. Ed. 2011, 50, 7655.
(k) Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew.
Chem., Int. Ed. 2011, 50, 3793. (l) Zanardi, A.; Novikov, M. A.; Martin,
D
dx.doi.org/10.1021/ja404217t | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX