M. S. Yusubov et al. / Tetrahedron Letters 49 (2008) 1506–1509
1509
Wartchow, R. Arkivoc 2003, 145–163; (q) Sakuratani, K.; Togo, H.
Synthesis 2003, 21–23; (r) Tohma, H.; Maegawa, T.; Kita, Y. Synlett
2003, 723–725; (s) Sakuratani, K.; Togo, H. Arkivoc 2003, 11–20; (t)
Tohma, H.; Maegawa, T.; Kita, Y. Arkivoc 2003, 62–70; (u) Cheng,
D.-P.; Chen, Z.-C.; Zheng, Q.-G. Synth. Commun. 2003, 33, 2671–
2676; (v) Chen, J.-M.; Lin, X.-J.; Huang, X. J. Chem. Res. 2004,
43–44; (w) Lee, J.-W.; Ko, K. Y. Bull. Korean Chem. Soc. 2004, 25,
19–20; (x) Teduka, T.; Togo, H. Synlett 2005, 923–926; (y) Kalberer,
E. W.; Whitfield, S. R.; Sanford, M. S. J. Mol. Catal. A: Chem. 2006,
251, 108–113.
in MeOH (0.5 mL) were added alkynes 6a–f (0.15 mmol) in MeOH
(0.5 mL), and the reaction mixture was stirred at room temperature
for 1 h. Then, dichloromethane (1.0 mL) was added and the resulting
solution was cooled to 5 °C. IRA 900 (350–400 mg, hydroxide form)
was added and the mixture was stirred for 5 min in the dark. The resin
was removed by filtration and the solution was concentrated under
reduced pressure to afford pure diiodoketals 9a–f as judged by NMR-
spectroscopy.
15. Spectral data for 7k, 8k and new compounds. 2-Iodo-3-methoxy-3-
phenylpropan-1-ol (7k): Oil: 1H NMR: d 2.89 (1H, OH, s), 3.27 (3H,
OCH3, s), 3.81 (1Ha, CH2, m), 3.95 (1Hb, CH2, m), 4.34 (1H, CH–
OMe, m), 4.52 (1H, CH–I, m); IR (neat) m 3356 (OH), 1123 and 1085
4. (a) Thottumkara, A. P.; Vinod, T. K. Tetrahedron Lett. 2002, 43, 569–
572; (b) Tohma, H.; Maruyama, A.; Maeda, A.; Maegawa, T.; Dohi,
T.; Shiro, M.; Morita, T.; Kita, Y. Angew. Chem., Int. Ed. 2004, 42,
3595–3598; (c) Yusubov, M. S.; Drygunova, L. A.; Zhdankin, V. V.
Synthesis 2004, 2289–2292; (d) Dohi, T.; Maruyama, A.; Yoshimura,
M.; Morimoto, K.; Tohma, H.; Shiro, M.; Kita, Y. Chem. Commun.
2005, 2205–2207; (e) Dohi, T.; Morimoto, K.; Takenaga, N.;
Maruyama, A.; Kita, Y. Chem. Pharm. Bull. 2006, 54, 1608–1610;
(f) Dohi, T. J. Pharm. Soc. Jpn. 2006, 126, 757–766; (g) Moroda, A.;
Togo, H. Tetrahedron 2006, 62, 12408–12414; (h) Dohi, T.; Morim-
oto, K.; Takenaga, N.; Goto, A.; Maruyama, A.; Kiyono, Y.; Tohma,
H.; Kita, Y. J. Org. Chem. 2007, 72, 109–116; (i) Justik, M. W.
Tetrahedron Lett. 2007, 48, 3003–3007.
5. (a) Yusubov, M. S.; Gilmkhanova, M. P.; Zhdankin, V. V.;
Kirschning, A. Synlett 2007, 563–566; (b) Yusubov, M. S.; Yusubova,
R. Ya.; Chi, K.-W.; Park, J. Y.; Kirschning, A. Beilstein J. Org.
Chem. 2007, 3, 19; (c) Katritzky, A. R.; Savage, G. P.; Gallos, J. K.;
Durst, H. D. J. Chem. Soc., Perkin Trans. 2 1990, 1515–1518.
6. Amberlite IRA 900 (chloride form) was obtained from Supelco.
7. Iranpoor, N.; Shekarriz, M. Tetrahedron 2000, 56, 5209–5211.
8. Cerritelli, S.; Chiarini, M.; Cerichelli, G.; Capone, M.; Marsili, M.
Eur. J. Org. Chem. 2004, 623–630.
9. Asensio, G.; Andreu, C.; Boix-Bernardini, C.; Mello, R.; Gonzalez-
Nunez, M.-E. Org. Lett. 1999, 2125–2128.
10. Davidson, R. I.; Kropp, P. J. J. Org. Chem. 1982, 47, 1904–1909.
11. Mahajan, V. A.; Shinde, P. D.; Gajare, A. S.; Karthikeyan, M.;
Wakharkar, R. D. Green Chem. 2002, 325–327.
12. This transformation has been reported before: (a) Sato, T.; Tamura,
K.; Nagayoshi, K. Chem. Lett. 1983, 5, 791–794; (b) Davidson, R. I.;
Kropp, P. J. J. Org. Chem. 1982, 47, 1904–1909; (c) Schauble, J. H.;
Trauffer, E. A.; Deshpande, P. P.; Evans, R. D. Synthesis 2005, 1333–
1339.
13. (a) Janas, J. J.; Asirvatham, E. T.; McNelis, E. Oxid. Commun. 1985/
86, 8, 65; (b) Bovonsombat, P.; McNelis, E. Tetrahedron Lett. 1992,
33, 4123–4126.
(C–OH and C–O–C), 762 and 690 (C–I) cmꢀ1
.
2-Iodo-1-phenylpropane-1,3-diol (8k): Colorless solid: mp 84–86 °C;
1H NMR: d 2.72 (1H, OH, s), 3.14 (1H, OH, s), 3.82 (1Ha, CH2, m),
3.96 (1Hb, CH2, m), 4.44 (1H, CH–OMe, d), 5.04 (1H, CH–I, m); IR
(neat) m 3380 (OH), 1074 (C–O), 780 and 684 (C–I) cmꢀ1
.
3-Iodo-6-methoxycyclohex-1-ene (7e): Oil: 1H NMR: d 2.00–2.08 (4H,
CH2, m), 3.34 (3H, OCH3, s), 3.99 (1H, CH–OMe, m), 4.43 (1H, CH–
I, m), 5.72 (1H, @CH, m), 5.93 (1H, @CH, m); 13C NMR: d 25.4 (CI),
30.0 (CH2), 30.1 (CH2), 57.0 (OCH3), 80.6 (COMe), 124.1 (@C–
COMe), 130.9 (@C–CI); IR (neat) m 1125 (C–O–C), 926 (C@C), 644
(C–I) cmꢀ1. Anal. Calcd for C7H11IO: C, 35.32; H, 4.66. Found: C,
35.17; H, 4.73.
1,1-Diiodo-2,2-dimethoxyhexane (9a): Oil: 1H NMR: d 0.94 (3H, CH3,
t), 1.34–1.43 (4H, CH2, m), 2.02 (2H, CH2, t), 3.33 (6H, CH3, s) 5.39
(1H, CI2H, s); 13C NMR: d ꢀ15.10 (CI2), 12.2 (CH3), 21.8 (CH2), 26.4
(CH2), 33.7 (CH2), 50.4 (OCH3), 98.8 (C(OMe)2); IR (neat) m 1075
and 1042 (C–O–C), 682 and 640 (C–I) cmꢀ1. Anal. Calcd for
C8H16I2O2: C, 24.14; H, 4.05. Found: C, 23.89; H, 4.18.
4,4-Diiodo-5,5-dimethoxyoctane (9b): Oil: 1H NMR: d 0.97 (3H, CH3,
t), 1.05 (3H, CH3, t), 1.54–1.62 (4H, CH2, m), 2.03 (2H, CH2–
C(OMe)2, t), 2.23 (2H, CH2–CI2, t), 3.56 (6H, CH3, s); IR (neat) m
1095 and 1056 (C–O–C), 678 and 632 (C–I) cmꢀ1. Elemental analysis
and 13C NMR could not be obtained for 9c due to slow decompo-
sition of the sample on storage.
(2,2-Diiodo-1,1-dimethoxyethyl)cyclohexane or1,1-Diiodo-2,2-dimeth-
oxyethyl-2-cyclohexylethane (9c): Colorless solid: mp 34–35 °C
(decomp.); 1H NMR: d 1.12–1.26 (6H, CH2, m), 1.66 (2H, CH3, m),
1.77 (1Ha, CH2, m), 1.89 (1Hb, CH2, m), 2.28 (H, CH, m), 3.45 (6H,
CH3, s), 5.47 (1H, CI2, s); 13C NMR: d ꢀ18.5 (CHI2), 26.3 (CH2), 27.1
(CH2), 29.2 (CH2), 43.9 (CH), 50.6 (OCH3), 51.8 (OCH3), 97.1
(C(OMe)2). Anal. Calcd for C10H18I2O2: C, 28.32; H, 4.28. Found: C,
28.70; H, 4.65.
2-Diiodomethyl-2-methoxytetrahydrofuran (9d): Oil: 1H NMR: d 2.05
(2H, CH2, m), 2.35 (1H, CH2, m), 2.44 (H, CH2, m), 3.22 (6H, CH3, s),
4.11 (2H, CH2, m), 5.52 (1H, CI2H, s); 13C NMR: d ꢀ20.1 (CI2), 25.8
(CH2), 38.1 (CH2), 48.2 (OCH3), 71.5 (CH2–O), 108.0 (O–C–OMe); IR
(neat) m 1050 and 1022 (C–O–C), 690 and 647 (C–I) cmꢀ1. Anal. Calcd
for C6H10I2O2: C, 19.59; H, 2.74. Found: C, 19.44; H, 2.81.
1,1-Diiodo-2,2-dimethoxyethyl-2-phenylethane (9e): Colorless solid: mp
84–86 °C (decomp.); 1H NMR: d 3.32 (6H, OCH3, s), 5.56 (1H, CI2H,
s), 7.30–7.35 (3Harom., m) 7.62–7.67 (2Harom., m); 13C NMR: d ꢀ19.4
(CI2), 49.0 (OCH3), 97.4 (C(OMe)2), 125.8, 127.3, 128.0, 133.7 (Carom.);
IR (KBr) m 1089 and 1045 (C–O–C), 679 and 635 (C–I) cmꢀ1. Anal.
Calcd for C10H12I2O2: C, 28.73; H, 2.89. Found: C, 28.86; H, 2.85.
2,2-Diiodo-1,1-dimethoxyethyl-1-phenylpropane (9f): Colorless solid:
mp 65–66 °C (decomp.); 1H NMR: d 2.86 (3H, CH3, s), 3.59 (6H,
OCH3, s), 7.37–7.40 (3Harom., m) 7.64–7.66 (2Harom., m); 13C NMR: d
15.1 (CH3), 45.3 (CI2), 53.89 (ICH3), 102.3 (C(OMe)2), 126.2, 128.0,
131.2, 132.5 (Carom.); IR (KBr) m 1068 and 1015 (C–O–C), 694 and 665
(C–I) cmꢀ1. Anal. Calcd for C11H14I2O2: C, 30.58; H, 3.27. Found: C,
30.71; H, 3.59.
14. Typical procedure for iodomethoxylation. Alkenes 5a–c,e (0.3 mmol)
were added to a mixture of iodine (25.4 mg, 0.10 mmol) and m-
iodosylbenzoic acid (2) (29 mg, 0.11 mmol) in MeOH (0.5 mL) and
the reaction mixture was stirred at room temperature for 1 h (the
reactions were monitored by TLC). Then, dichloromethane (1.0 mL)
was added and the resulting solution was cooled to 5 °C. IRA 900
(350–400 mg, hydrocarbonate form) was added and the mixture was
stirred for 5 min. The resin was removed by filtration and the solution
was concentrated under reduced pressure to afford pure methoxyiod-
ides 7a–c,e as judged by NMR-spectroscopy. m-Iodobenzoic acid (3)
can be easily regenerated from the IRA 900 resin 4 by treatment with
aqueous HCl and reoxidized to reagent
2 without additional
purification as described in Ref. 5a. For the iodomethoxylation of
alkenes 5d,g–k, a molar ratio of alkene:2:iodine = 0.2:0.11:0.2 (mmol)
was employed, instead. The iodohydroxylation was carried out
accordingly accept that MeCN–H2O (5:1, 0.5 mL) was employed as
solvent instead of MeOH.
Typical procedure for diiododimethoxylation. To a solution of iodine
(28 mg, 0.11 mmol) and m-iodosylbenzoic acid (2) (29 mg, 0.11 mmol)