S. Ghosh, G. P. Tochtrop / Tetrahedron Letters 50 (2009) 1723–1726
1725
and diversity-oriented synthesis through five separate multi-com-
Acknowledgment
ponent reactions (MCRs).
Table 1 illustrates a sampling of the reaction conditions we
studied. Our initial exploration focused primarily on alcoholic sol-
vents; however, we quickly determined that varying amounts of
water played an important role in both reaction time and yield.
It is likely that the 3:1 ratio of ethanol/water provided a balance
between solvent dielectric for the reaction pathway while still
allowing the reagents to be soluble in the media. Keeping the eth-
anol/water ratio fixed, we subsequently screened the effect of var-
ious alkali metal and organic bases to find LiOH the most effective.
Using this approach, not only were our yields superior to those
previously reported, but we were also able to accomplish the con-
versions in a minimal amount of time (approximately 40 min) and
at low temperatures (35 °C). For the reactions listed in Table 1, we
utilized 3-chlorobenzyl chloride as the representative benzyl ha-
lide mainly due to its importance in the molecules we were syn-
thesizing to modulate Ab secretion.
After our careful optimization, we applied this methodology to
a wide range of substrates summarized in Table 2 using a uniform
set of reaction conditions.5 Interestingly, we obtained compara-
tively lower yields for the nitro derivatives. Among all other nitro
derivatives, p-nitro (Table 2, entries 12 and 13) gave the lowest
yield, further substantiating a borderline/SN1-type mechanism,
where at least a partial charge builds at the benzylic position. Fur-
ther, the best yields were obtained for the substrates containing an
electron-donating functional group such as –OCH3 (Table 2, entry
3). It is worth pointing out that the reaction was highly compatible
with a number of functional groups including –OCH3, –NO2, halo-
gens, –CN, –CO2CH3, –CH3, and –CF3. Benzyl chlorides and bro-
mides gave similar yields (Table 2, compare entry 1 and entry 2,
entry 5 and entry 6, entry 12 and entry 13).
This work was supported by the NIH (AG015885 & HL053315).
Supplementary data
Supplementary data (experimental procedure, NMR spectra,
high resolution mass spectra and compound characterization data
are available) associated with this article can be found, in the on-
References and notes
1. (a) Marshall, K. Can. J. Chem. 1959, 37, 325; (b) Chu, S. H.; Mautner, H. G. J. Org.
Chem. 1961, 26, 4498; (c) Johnston, T. P.; Gallagher, A. J. Org. Chem. 1963, 28,
1305; (d) Carroll, F. I.; Dickson, H. M.; Wall, M. E. J. Org. Chem. 1965, 30, 33; (e)
Aroyan, A. A.; Ovsepyan, T. R. Armyanskii Khimicheskii Zhurnal 1968, 21, 858; (f)
Bewick, A.; Mellor, J. M.; Owton, W. M. J. Chem. Soc., Perkins Trans. 1 1985, 1039;
(g) Vyas, D. M.; Benigni, D.; Partyka, R. A.; Doyle, T. W. J. Org. Chem. 1986, 51,
4307; (h) Weintraub, P. M.; Miller, F. P.; Wiech, N. L. Heterocycles 1987, 26,
1503; (i) Walker, M. A.; Heathcock, C. H. J. Org. Chem. 1992, 57, 5566; (j) Kumar,
S.; Saini, R.; Sing, H. J. Chem. Soc., Perkins Trans. 1 1992, 2011; (k) Akaji, K.;
Kuriyama, N.; Kiso, Y. J. Org. Chem. 1996, 61, 3350; (l) Tan, D. S.; Foley, M. A.;
Shair, M. D.; Schreiber, S. L. J. Am. Chem. Soc. 1998, 120, 8565; (m) Tan, D. S.;
Foley, M. A.; Stockwell, B. R.; Shair, M. D.; Schreiber, S. L. J. Am. Chem. Soc. 1999,
121, 9073; (n) Zhang, Z.; Martell, A. E.; Motekaitis, R. J.; Fu, L. Tetrahedron Lett.
1999, 40, 4615; (o) Petra, D. G. I.; Kamer, P. C. J.; Spek, A. L.; Schoemaker, H. E.;
van Leeuwen, P. W. N. M. J. Org. Chem. 2000, 65, 3010; (p) Rombouts, F. J. R.;
Fridkin, G.; Lubell, W. D. J. Comb. Chem. 2005, 7, 589; (q) Angelosante, J. K.;
Lewis, B. J.; Cooper, L. E.; Swanson, R. A.; Daley, C. J. A. Phosphorus, Sulfur, Silicon
2006, 181, 2263.
2. (a) Kennard, G. J.; Deutsch, E. Inorg. Chem. 1978, 17, 2225; (b) Mirza, S. A.;
Pressler, M. A.; Kumar, M.; Day, R. O.; Maroney, M. J. Inorg. Chem. 1993, 32,
977; (c) Hay, R. W.; Galyer, A. L. Transition Met. Chem. 1997, 22, 97; (d) Gallo,
V.; Mastrorilli, P.; Nobile, C. F.; Braunstein, P.; Englert, U. Dalton Trans. 2006,
2342; (e) Carson, E. C.; Lippard, S. J. Inorg. Biochem. 2006, 100, 1109; (f) Smith,
A. L.; Day, C. S.; Que, L., Jr.; Zhou, Y.; Bierbach, U. Inorg. Chim. Acta 2007, 360,
2824.
In conjunction with our efforts to synthesize small libraries that
modulate Ab-peptide excretion, we became further interested in
exploiting b-benzylmercaptoethylamines in MCRs, as they create
significant possibilities for molecular diversity in one step, afford-
ing more economical synthetic approaches as compared to linear
syntheses.6 We explored five separate MCRs with aims of generat-
ing a broad swath of diverse small molecules quickly (Scheme 2).
3. (a) Walton, E.; Wilson, A. N.; Holly, F. W.; Folkers, K. J. Am. Chem. Soc. 1954, 76,
1146; (b) Reisner, D. B. J. Am. Chem. Soc. 1956, 78, 5102; (c) Moffatt, J. G.;
Khorana, H. G. J. Am. Chem. Soc. 1961, 83, 663; (d) Tucker, H.; Coope, J. F. J. Med.
Chem. 1978, 21, 769; (e) Sterk, G. J.; Van der Goot, H.; Henk, T. Eur. J. Med. Chem.
1986, 21, 305; (f) Sami, S. M.; Remers, W. A.; Bradner, W. T. J. Med. Chem. 1989,
32, 703; (g) Hardy, G. W.; Lowe, L. A.; Mills, G.; Sang, P. Y.; Simpkin, D. S. A.;
Follenfant, R. L.; Shankley, C.; Smith, T. W. J. Med. Chem. 1989, 32, 1108; (h)
Buschauer, A.; Lachenmayr, F.; Schunack, W. Pharmazie 1991, 46, 840; (i) Oya,
S.; Plössl, K.; Kung, M. P.; Stevenson, D. A.; Kung, H. F. Nucl. Med. Biol. 1998, 25,
135; (j) Zhuang, Z. P.; Kung, M. P.; Mu, M.; Hou, C.; Kung, H. F. Bioconjugate
Chem. 1999, 10, 159; (k) Nicolaou, K. C.; Hughes, R.; Pfefferkorn, J. A.; Barluenga,
S. Chem. Eur. J. 2001, 7, 4296; (l) Okavi, S. M.; Torfs, P.; Adriaens, P.; Verbruggen,
A. M. J. Labelled Compd. Radiopharm. 2002, 45, 407; (m) Zhang, Y.; Dai, X.;
Kallmes, D. F.; Pan, D. Tetrahedron Lett. 2004, 45, 8673; (n) Masip, I.; Ferrándiz-
Huertas, C.; García-Martínez, C.; Ferragut, J. A.; Ferrer-Montiel, A.; Messeguer,
A. J. Comb. Chem. 2004, 6, 135; (o) Cleynhens, B. J.; de Groot, T. J.; Vanbilloen, H.
P.; Kieffer, D.; Mortelmans, L.; Bormans, G. M.; Verbruggen, A. M. Bioorg. Med.
Chem. 2005, 13, 1053; (p) Zhuang, Z. P.; Kung, M. P.; Hou, C.; Ploessl, K.; Kung,
H. F. Nucl. Med. Biol. 2005, 32, 171; (q) Kieffer, D. M.; Vanbilloen, H. P.;
Cleynhens, B. J.; Terwinghe, C. Y.; Mortelmans, L.; Bormans, G. M.; Verbruggen,
A. M. Nucl. Med. Biol. 2006, 33, 125.
We first explored
well-documented, diverse biological activities.7 As a first trial, we
synthesized the novel -aminophosphonate 23 by following a lit-
a-aminophosphonates due, in large part, to their
a
erature procedure utilizing 2-(3-nitrobenzylsulfanyl)-ethylamine
as the amine component. The reaction proceeded smoothly, afford-
ing a similar yield (70%) to those previously reported utilizing the
Zr(IV) catalyst.8 Because of the well-known therapeutic value of
barbiturates,9 next we turned our attention toward the synthesis
of 24 via a three-component reaction using 2-benzylsulfanyl-eth-
ylamine. Our 68% yield is in line with the 72–90% yields previously
reported in the water-based solvent system.10 Due to the preva-
lence of the thiazoles across diverse pharmaceutical targets,11 we
utilized the methodology of Yavari et al.12 to synthesize 25 via a
four-component reaction with 2-(3-chlorobenzylsulfanyl)-ethyla-
mine.12 The reaction proceeded with reasonable yield (65%) after
24 h. We further explored the synthesis of novel bis-2,3-dihydro-
quinazolin-4(1H)-one derivatives 26 utilizing a three-component
reaction following a literature procedure.13 As compared to prece-
dent, our substrate proved to be effective as a reagent in the p-tol-
uenesulfonic acid-catalyzed reaction affording 26 in 50% yield.
Finally, since its discovery, the ‘Ugi four-component reaction’ is
one of the best known and most popular multi-component reac-
tions. In this reaction, an aldehyde/ketone, an amine, a carboxylic
4. (a) LaPorte, G. Parfumerie, Cosmetique, Savons 1968, 11, 516; (b) LaPorte, G. Am.
Perfumer Cosmetics 1970, 85, 47.
5. Typical reaction procedure: LiOH (0.245 g, 10.2 mmol) was dissolved in 5 mL of
water, and 15 mL of ethanol was added. The resulting solution was added to a
flask containing cysteamine hydrochloride (0.568 g, 5 mmol), followed by the
dropwise addition of benzyl halides (5 mmol) with continuous stirring. The
reaction mixture was stirred for 40 min at 35 °C, and ethanol was removed in
vacuo. Twenty millilitres of water were subsequently added, and the mixture
was extracted with dichloromethane (3 Â 30 mL), dried over anhydrous
Na2SO4, concentrated in vacuo, and purified via column chromatography over
silica gel (60 Å, 230–400 mesh, SiliCycle) using a mobile phase consisting of a
suitable mixture of dichloromethane–methanol (gradient from 2% v/v
methanol/dichloromethane to 20% v/v methanol/dichloromethane) to afford
the
chromatographically
pure
desired
b-benzylmercaptoethylamine
derivatives.
6. (a) Gallop, M. A.; Barrett, R. W.; Dower, W. J.; Fodor, S. P. A.; Gordon, E. M. J.
Med. Chem. 1994, 37, 1233; (b) Gordon, E. M.; Barrett, R. W.; Dower, W. J.;
Fodor, S. P. A.; Gallop, M. A. J. Med. Chem. 1994, 37, 1385.
7. (a) Pratt, R. F. Science 1989, 246, 917; (b) Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade,
acid, and an isocyanide form an a-acylamino carboxamide through
´
R.; Wood, J. M. J. Med. Chem. 1989, 32, 1652; (c) Bonarska, D.; Kleszczynska, H.;
a one-pot condensation.14 The final application is illustrated by the
formation of 27, derived from 2-(4-methoxybenzylsulfanyl)-ethyl-
amine, in 72% yeild.14c
Sarapuk, J. Cell. Mol. Biol. Lett. 2002, 7, 929; (d) Grembecka, J.; Mucha, A.; Cierpicki,
T.; Kafarski, P. J. Med. Chem. 2003, 46, 2641; (e) Skropeta, D.; Schwörer, R.;
Schmidt, R. R. Bioorg. Med. Chem. Lett. 2003, 13, 3351.