N. Belhaj Mbarek Elmkacher et al. / Polyhedron 27 (2008) 893–897
897
d = 14.20 (Me (allyl)); 22.72 (Me on ligand); 18.16, 18.37,
18.82 and 19.19(Me on C6H3); 49.46 (CH2 on ligand);
63.57 and 64.26 (C(11) and C(13)); 126.24–135.68 (C(ar)
and C(12)); 137.21 (C–C on C6H5); 149.84 and 150.51(C–
N on C6H3); 173.73 and 176.54 (C@N on ligand).
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax:
(+44) 1223-336-033, or e-mail: deposit@ccdc.cam.ac.uk.
Supplementary data associated with this article can be
4.2.4. ½2; 6-ðiPrÞ -C6H3NCðPhÞCH2CðMeÞNC6H3-
2
þ
ꢀ
2; 6-ðiPrÞ Pdðg3-C4H7Þꢂ PF6 (10)
References
2
Following the general procedure, from [2,6-(iPr)2-
C6H3NC(Ph)CHC(Me)NHC6H3-2,6-(iPr)2] (0.083 g, 0.173
mmol), Pd(dba)2 (0.1 g, 0.173 mmol) and 2-methylallyloxy-
phosphonium (0.173 mmol, 0.065 g) was obtained 0.129 g
of 10 as a pale yellow solid after crystallization from a mix-
ture (CH2Cl2/n-hexane: 1/1).
[1] J.E. Parks, R.H. Holm, Inorg. Chem. 7 (1968) 1408.
[2] A recent review L. Bourget-Merle, Michael F. Lappert, J.R. Severn,
Chem. Rev. 102 (2002) 3031.
[3] J. Feldman, S.J. McLain, A. Parthasarathy, W.J. Marshall, J.C.
Calabrese, S.D. Arthur, Organometallics 16 (1997) 1514.
[4] W. Clegg, E.K. Cope, A.J. Edwards, F.S. Mair, Inorg. Chem. 37
(1998) 2317.
Yield = 95%. IR (Golden Gate): mC@N = 1616 and
[5] M. Rahim, N.J. Taylor, S. Xin, S. Collins, Organometallics 17 (1998)
1315.
1
1647 cmꢀ1. H NMR (300 MHz, CDCl3, 25 °C, d [ppm]):
d = 0.88–1.40 (m, 21 H, Me-iPr and Me on allyl); 1.99 (s,
3H, Me on ligand); 2.17 (d, 6H, J = 16.8 Hz, Me-iPr);
2.54 (m, 2H, H11anti and H13anti); 2.63 (m, 2H, H11syn and
H13syn); 3.02 (sept, 2H, J = 7.5 Hz, H-C-iPr); 3.39 (sept,
1H, J = 6.9 Hz, H-C-iPr); 3.76 (sept, 1H, J = 7.2 Hz,
H-C-iPr); 4.66–5.06 (m, 2H, CH2 on ligand); 7.02–7.26
(m, 11H, Har); 13C NMR (75.5 MHz, CDCl3, 25 °C, d
[ppm]): d = 15.87 (Me-allyl); 22.84 (Me on ligand); 23.84,
23.88, 24.00, 24.21, 24.34, 24.38, 24.71 and 25.66 (Me on
iPr group); 28.68, 28.76, 29.20 and 29.43 (CH on iPr
group); 49.91 (CH2 on ligand); 64.41 and 64.9 (C(11) and
C(13)); 124.25–138.08 ( C(ar) and C(12)); 138.23 (C–C on
C6H5); 147.26 and 148.14 (C–N on C6H3); 172.77 and
177.45 (C@N on ligand).
[6] B. Qian, D.L. Ward, N.R. Smith, Organometallics 17 (1998)
3070.
[7] W.K. Kim, M.J. Fevola, L.M. Liable-Sauds, A.L. Rheingold, K.H.
Theopold, Organometallics 17 (1998) 4541.
[8] F. Cosledan, P.B. Hitchcock, M.F. Lappert, Chem. Commun. (1999)
707.
[9] D.L. Reger, S.J. Knox, M.F. Huff, A.L. Rheingold, B.S. Haggerty,
Inorg. Chem. 30 (1991) 1754.
[10] C.F. Caro, P.B. Hitchcock, M.F. Lappert, Chem. Commun. (1999)
1433.
[11] P.B. Hitchcock, M.F. Lappert, S. Tian, J. Chem. Soc., Dalton Trans.
(1997) 1945.
[12] P.B. Hitchcock, M.F. Lappert, M. Layh, D.-S. Liu, R. Sablong, S.
Tian, J. Chem. Soc., Dalton Trans. (2000) 2301 and references quoted
therein.
[13] P.B. Hitchcock, J. Hu, M.F. Lappert, M. Layh, D.-S. Liu, J.R.
Severn, S. Tian, An. Quim. Int., Ed. Engl. 92 (1996) 186.
[14] K. Landolsi, M. Rzaigui, F. Bouachir, Tetrahedron Lett. 43 (2002)
9463.
4.3. X-ray crystallographic study
[15] E.K. Cope-Eatough, F.S. Mair, R.G. Pritchard, J.E. Warren, R.J.
Woods, Polyhedron 22 (2003) 1447.
[16] K. Landolsi, P. Richard, F. Bouachir, J. Organomet. Chem. 690
(2005) 513.
[17] J. Zhang, Z. Ke, F. Bao, J. Long, H. Gao, F. Zhu, Q. Wu, J. Mol.
Catal. A: Chem. 249 (2006) 31.
[18] T. Schleis, T.P. Spaniol, J. Okuda, J. Heinemann, R. Mulhaupt, J.
Organomet. Chem. 569 (1998) 159.
[19] K. Landolsi, F. Bouachir, E. Bouajila, M. Picquet, D. Poinsot, I.
Tkatchenko, in: 1st International Congress on Ionic Liquid, Salz-
burg/Austria, June 19–22, COIL, 2005, p. 28.
[20] K. Landolsi, N. Belhaj Mbarek Elmkacher, T. Guerfel, F. Bouachir,
[21] Y.-L. Tung, W.-C. Tseng, C.-Y. Lee, P.-F. Hsu, Y. Chi, S.-M. Peng,
G.-H. Lee, Organometallics 18 (1999) 864.
The X-ray crystallographic study of complex 10 was car-
ried out on a CAD4 Enraf-Nonius diffractometer (Mo Ka).
Data were collected at 283 K in the range 1–27° and this
gave a total of 9354 reflections, yielding 8271 independent
values (Rint = 0.1933). The structure was solved by direct
method and difference Fourier techniques and were refined
by full-matrix least-squares analysis. Refinements were
based on F2 and were carried out using all the data (SHEL-
XL-97). All of the non-hydrogen atoms were re-fined aniso-
tropically. The hydrogen atoms were fixed geometrically in
their idealized positions. The set of physical and crystallo-
graphic characteristics as well as the experimental condi-
tions are listed in Table 1.
[22] D.J. Tempel, L.K. Johnson, R.L. Huff, P.S. White, M. Brookhart, J.
Am. Chem. Soc. 122 (2000) 6686.
[23] A. Mechria, M. Rzaigui, F. Bouachir, Tetrahedron Lett. 44 (2003)
6773.
Appendix A. Supplementary material
[24] B. Crociani, R. Bertani, G. Bandoli, J. Chem. Soc., Dalton Trans.
(1982) 1715.
[25] M.F. Rettig, P.M. Maitlis, Inorg. Synth. 17 (1977) 134.
[26] T. Ukai, H. Kawazura, Y. Ishii, J. Bonnet, J.A. Ibers, J. Organomet.
Chem. 65 (1994) 253.
CCDC 272962 contains the supplementary crystallo-
graphic data for 10. These data can be obtained free of
html, or from the Cambridge Crystallographic Data
[27] D. Neibecker, B.J. Castro, J. Organomet. Chem. 134 (1977) 105.