NJC
Paper
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
The authors gratefully acknowledge SAIF, Panjab University,
Chandigarh for providing all the spectroscopic and analytical
data. N. Yadav and V. B. Yadav are grateful to CSIR, New Delhi
for the award of a Junior Research Fellowship (JRF) and Senior
Research Fellowship (SRF), respectively. H. Sagir and Ankit
Verma acknowledge UGC, New Delhi for the award of a Senior
Research Fellowship (SRF) and Junior Research Fellowship
(JRF), respectively and Mohd Danish Ansari acknowledges
UPCST (Project No. CST/D-2276) for the financial support.
References
1 J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek,
J. Cairney, C. A. Eckert, W. J. Frederick Jr., J. P. Hallett,
D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer
and T. Tschaplinski, Science, 2006, 311, 484–489.
2 G. W. Huber, S. Iborra and A. Corma, Chem. Rev., 2006, 106,
4044–4098.
Scheme 3 A plausible mechanism for the synthesis of 2,3-dihydro-1,5-
benzothiazepines.
3 A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107,
2411–2502.
4 J. N. Chheda, G. W. Huber and J. A. Dumesic, Angew. Chem.,
Int. Ed., 2007, 46, 7164–7183.
5 I. Bechthold, K. Bretz, S. Kabasci, R. Kopitzky and
A. Springer, Chem. Eng. Technol., 2008, 31, 647–654.
6 D. M. Alonso, S. G. Wettstein and J. A. Dumesic, Chem. Soc.
Rev., 2012, 41, 8075–8098.
7 P. T. Anastas and M. M. Kirchhoff, Acc. Chem. Res., 2002, 35,
686–694.
8 V. B. Yadav, P. Rai, H. Sagir, A. Kumar and I. R. Siddiqui,
ChemistrySelect, 2017, 2, 8320–8325.
9 P. Rai, H. Sagir, A. Kumar, V. B. Yadav and I. R. Siddiqui,
ChemistrySelect, 2018, 3, 2565–2570.
10 C. Capello, U. Fisher and K. Kungerbu¨hler, Green Chem.,
2007, 9, 927–934.
11 H. R. Safaei, M. Shekouhy, S. Rahmanpur and A. Shirinfeshan,
Green Chem., 2012, 14, 1696.
12 Y. Gu and F. Jerome, Green Chem., 2010, 12, 1127.
13 G. P. Ellis, Chemistry of heterocyclic compounds: synthesis of
fused heterocycles, Wiley, New York, 2009, vol. 47.
14 C. Hou, Q. He and C. Yang, Org. Lett., 2014, 10–13.
(2) and a series of substituted chalcones (1). The results clearly
revealed that the present procedure is compatible with a wide
range of substituents in the chalcones including both electron
withdrawing and electron donating substituents at different
positions and gave the corresponding products in good-to-
excellent yield (Table 3).
A plausible mechanism for the synthesis of the reported
heterocycles is depicted in Scheme 3. In the above reaction, the
hydroxyl group of glycerol plays an important role. It activates
the carbonyl group of chalcone through hydrogen bonding
which facilitates the reaction pathway with 2-aminothiophenol
leading to the formation of intermediate (b). Subsequently,
tautomerization of intermediate (b) results in thia-Michael
adduct (c) which, on intramolecular nucleophilic attack by
the NH2 group, followed by dehydration, furnished the desired
1,5-benzothiazepines 3.
Conclusion
´
In summary, we have reported a rapid and efficient method for 15 B. Treguier, M. Lawson, G. Bernadat, J. Bignon, J. Dubois,
the synthesis of 2,3-dihydro-1,5-benzothiazepines, a biologi-
cally significant scaffold. The key features of the present work
J. D. Brion, M. Alami and A. Hamze, ACS Comb. Sci., 2014,
16(12), 702–710.
are the use of bio-renewable and recyclable, eco-compatible 16 N. P. Shetgiri and B. K. Nayak, Indian J. Chem., 2003,
solvent, catalyst-free mild reaction conditions and the use of 42B, 683.
readily available cost-effective starting materials, good yields 17 K. Satyanarayanan and M. N. A. Rao, Indian J. Pharm. Sci.,
of the desired products, operational simplicity and isolation of 1993, 55, 230.
pure products through simple filtration thereby avoiding the 18 G. De Sarro, A. Chimirri and A. De Sarro, et al., Eur. J. Med.
need for column chromatography. Chem., 1995, 30.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019
New J. Chem.