The authors acknowledge financial support of this research
from the Australian Research Council.
References
w A mixture of 2-cyanoprop-2-yl dithiobenzoate (2.0 molar equiv.),
AIBN, 9,10-(p,p0-divinyl)-diphenylanthracene,9 and chlorobenzene
was degassed through three freeze–pump–thaw cycles, sealed under
vacuum, and heated in a 70 1C oil bath for 64 h. After purification by
column chromatography, an orange solid product was obtained (47%
yield). 1H NMR (500 MHz, DCCl3-d3, ppm): d 1.33 (t, 6H, 2 ꢂ
–CH3), 1.53 (s, 6H, 2 ꢂ –CH3), 2.30–2.45 (m, 4H, 2 ꢂ –CH2–), 5.32
(q, 2H, 2 ꢂ –S–CH(Ar)–), 6.88–7.94 ppm (m, 13H, ar.).
z A mixture of 2-cyanoprop-2-yl dithiobenzoate (1.0 molar equiv.),
AIBN, 9-(p-vinylphenyl)-10-phenylanthracene,9 and chlorobenzene
was degassed through three freeze–pump–thaw cycles, sealed under
vacuum, and heated in a 70 1C oil bath for 20 h. After purification by
column chromatography, an orange solid was obtained (75% yield).
1H NMR (400 MHz, DCCl3-d3, ppm): d 1.33 (t, 3H, –CH3), 1.53 (s,
3H, –CH3), 2.30–2.45 (m, 2H, –CH2–), 5.32 (q, 1H, –S–CH(Ar)–),
6.88–7.94 ppm (m, 21H, ar.).
Fig. 1 The fluorescence spectra of P(AcN)–DPAn–P(AcN) (—) and
P(AcN)–DPAn (- - -) in degassed DCM solutions excited at 295 nm.
The polymer solutions have the same absorbance at the excitation
wavelength.
1 (a) J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks,
K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature,
1990, 347, 539; (b) G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A.
J. Heeger, Science, 1995, 270, 1789; (c) A. Adronov and J. M. J.
Frechet, Chem. Commun., 2000, 1701; (d) T. Weil, E. Reuther and
´
K. Mullen, Angew. Chem., Int. Ed., 2002, 41, 1900; (e) U. Hahn, M.
Gorka, F. Vogtle, V. Vicinelli, P. Ceroni, M. Maestri and V.
Balzani, Angew. Chem., Int. Ed., 2002, 41, 359; (f) Y. Yamamoto,
T. Fukushima, Y. Suna, N. Ishii, A. Saeki, S. Seki, S. Tagawa, M.
Taniguchi, T. Kawai and T. Aida, Science, 2006, 314, 1761; (g)
Energy Harvesting Materials, ed. D. L. Andrews, World Scientific,
Singapore, 2005; (h) S. W. Thomas, G. D. Joly and T. M. Swager,
Chem. Rev., 2007, 107, 1339.
Table 2 Donor/acceptor ratios and excitation energy transfer (EET)
efficiencies for the polymers
Donor/acceptor
EET efficiency (%)
P(AcN)–DPAn–P(AcN)
P(AcN)–DPAN
60
57
80
61
2 (a) S. E. Webber, Chem. Rev., 1990, 90, 1469; (b) K. P. Ghiggino
and T. A. Smith, Prog. React. Kinet., 1993, 18, 375.
3 (a) M. Chen, K. P. Ghiggino, A. W. H. Mau, E. Rizzardo, S. H.
Thang and G. J. Wilson, Chem. Commun., 2002, 2276; (b) M.
Chen, K. P. Ghiggino, A. Launikonis, A. W. H. Mau, E. Rizzardo,
W. H. F. Sasse, S. H. Thang and G. J. Wilson, J. Mater. Chem.,
2003, 13, 2696.
4 (a) T. P. Le, G. Moad, E. Rizzardo and S. H. Thang, PCT Int.
Appl. WO 9801478 A1 980115, Chem. Abstr., 1998, 128, 115390;
(b) J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffrey, T. P.
T. Le, R. T. A. Mayadunne, G. F. Miejs, C. L. Moad, G. Moad, E.
Rizzardo and S. H. Thang, Macromolecules, 1998, 31, 5559; (c) G.
Moad, E. Rizzardo and S. H. Thang, Aust. J. Chem., 2005, 58, 379;
(d) G. Moad, E. Rizzardo and S. H. Thang, Aust. J. Chem., 2006,
59, 669.
It has been shown that in acenaphthylene polymers, energy
migration among adjacent acenaphthyl chromophores occurs
with high efficiency but can be interrupted by trapping at sites
of polymer heterogeneity including excimer (excited dimer)
sites.8 While both polymers have similar molecular weights
and donor : acceptor ratios, it might be expected that a
migrating exciton resulting from photoexcitation of ace-
naphthyl chromophores will have, on average, a shorter
distance to travel and successfully reach the centrally located,
rather than an end-located, DPAn trap. The energy migration
process can thus explain the higher energy transfer efficiency
observed in P(AcN)–DPAn–P(AcN).
5 M. Chen, K. P. Ghiggino, A. W. H. Mau, E. Rizzardo, W. H. F.
Sasse, S. H. Thang and G. J. Wilson, Macromolecules, 2004, 37,
5479.
6 Th. Forster, Ann. Physik, 1948, 2, 55.
¨
7 W. H. Melhuish, J. Phys. Chem., 1961, 65, 229.
In conclusion, a difunctional RAFT agent has been synthe-
sised using a radical addition–fragmentation reaction. These
RAFT agents can be used to incorporate luminescent energy
traps as a centrally located component of polymer chains. For
the polymers studied in this work locating a DPAn chromo-
phore at the centre, rather than the end, of a PAcN chain leads
to significantly higher energy transfer efficiencies.
8 (a) T. A. Smith and K. P. Ghiggino, Polym. Int., 2006, 55, 772; (b)
M. Chen, K. P. Ghiggino, T. A. Smith, S. H. Thang and G. J.
Wilson, Aust. J. Chem., 2004, 57, 175.
9 (a) J. S. Hargreaves and S. E. Webber, Macromolecules, 1984, 17,
1741; (b) J. C. R. Cazes, Hebd. Seances Acad. Sci., 1958, 247, 1874;
(c) F. F. Blicke and R. D. Swisher, J. Am. Chem. Soc., 1934, 56,
1406; (d) G. Meyer, Bull. Soc. Chim. Fr., 1969, 10, 3629.
ꢁc
This journal is The Royal Society of Chemistry 2008
1114 | Chem. Commun., 2008, 1112–1114