4
Tetrahedron
7. Di Pietro, O.; Vicente-García, E.; Taylor, M. C.; Berenguer, D.;
Viayna, E.; Lanzoni, A.; Sola, I.; Sayago, H.; Riera, C.; Fisa, R.;
Clos, M. V.; Pérez, B.; Kelly, J. M.; Lavilla, R.; Muñoz-Torrero,
D. Eur. J. Med. Chem. 2015, 105, 120-137.
8. Hu, H.; Jiang, M.; Xie, L.; Hu, G.; Zhang, C.; Zhang, L.; Zhou, S.;
Zhang, M.; Gong, P. Chem. Res. Chin. Univ. 2015, 31, 746-755.
9. Neuhaus, J. D.; Morrow, S. M.; Brunavs, M.; Willis, M. C. Org
Lett. 2016, 18, 1562-1565.
10. Vougioukalakis, G. C.; Stergiopoulos, T.; Kontos, A. G.;
Pefkianakis, E. K.; Papadopoulos, K.; Falaras, P. Dalton Trans.
2013, 42, 6582-6591.
11. (a) Kim, S. H.; Kaplan, J. A.; Sun, Y.; Shieh, A.; Sun, H. L.;
Croce, C. M.; Grinstuff, M. W.; Parquette, J. R. Chem. Eur. J.
2015, 21, 101-105; (b) Liu, Y. Q.; Li, W. Q.; Morris-Natschke, S.
L.; Qian, K.; Yang, L.; Zhu, G. X.; Wu, X. B.; Chen, A. L.;
Zhang, S. Y.; Nan, X.; Lee, K. H. Med. Res. Rev. 2015, 35, 753-
789.
Catalyst recovery and reusability is an important property of
this catalyst. The reusability of Fe3O4-TDSN-Bi(III) was probed
in the synthesis of 4a. Upon reaction completion, the mixture was
cooled to room temperature and diluted with cold ethanol. The
catalyst was separated using an external magnet, washed several
times with ethanol, dried and then reused for subsequent
reactions. The catalyst could be reused at least 6 times without
considerable loss of activity (Table 2). No quantifiable amount of
leached bismuth from the Fe3O4-TDSN-Bi(III) catalyst was
detected (˂1%) as determined by ICP-OES. This excellent
reusability and high activity clearly show that the catalyst is
stable under the reaction conditions.
Table 2. Reusability of the Fe3O4-TDSN-Bi(III) catalyst in the
synthesis of 4a.a
12. Forkuo, A. D.; Ansah, C.; Boadu, K. M.; Boampong, J. N.;
Ameyaw, E. O.; Gyan, B. A.; Arku, A. T.; Ofori, M. F. Malar. J.
2016, 15, 1-12.
Run
1
2
3
4
5
6
7
Yield (%)b
97
97
96
94
94
92
92
13. (a) Sarmah, M. M.; Bhuyan, D.; Prajapati, D. Synlett 2013, 24,
2245-2248; (b) Anvar, S.; Mohammadpoor-Baltork, I.;
Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Khosropour,
A. R.; Kia, R. RSC Adv. 2012, 2, 8713-8720; (c) Kumar, A.; Rao,
V. K. Synlett 2011, 15, 2157-2162; (d) Kulkarni, A.; Török, B.
Green Chem. 2010, 12, 875-878; (e) Koley, S.; Chanda, T.;
Ramulu, B. J.; Chowdhury, S.; Singh, M. S. Adv. Synth. Catal.
2016, 358, 1195-1201; (f) Reddy, M. S.; Thirupathi, N.; Kumar,
Y. K. RSC Adv. 2012, 2, 3986-3992; (g) Reddy, B. S.;
Venkateswarlu, A.; Reddy, G. N.; Reddy, Y. R. Tetrahedron Lett.
2013, 54, 5767-5770; (h) Zheng, Q.; Ding, Q.; Liu, X.; Zhang, Y.;
Peng, Y. J. Organomet. Chem. 2015, 783, 77-82; (i) Xu, X.;
Zhang, X.; Liu, W.; Zhao, Q.; Wang, Z.; Yu, L.; Shi, F.
Tetrahedron Lett. 2015, 56, 3790-3792; (j) Cao, K.; Zhang, F. M.;
Tu, Y. Q.; Zhuo, X. T.; Fan, C. A. Chem. Eur. J. 2009, 15, 6332-
6334; (k) Huma, H. S.; Halder, R.; Kalra, S. S.; Das, J.; Iqbal, J.
Tetrahedron Lett. 2002, 43, 6485-6488; (l) Prajapati, S. M.; Patel,
K. D.; Vekariya, R. H.; Panchal, S. N.; Patel, H. D. RSC Adv.
2014, 4, 24463-24476; (m) Bharate, J. B.; Vishwakarma, R. A.;
Bharate, S. B. RSC Adv. 2015, 5, 42020-2053.
14. (a) Li, Y. F.; Wu, Z. G.; Shi, J.; Pan, Y.; Bu, H. Z.; Ma, H. F.; Gu,
J. C.; Huang, H.; Wang, Y. Z.; Wu, L. Tetrahedron 2014, 70,
8971-8975; (b) Bharate, J. B.; Bharate, S. B.; Vishwakarma, R. A.
ACS Comb. Sci. 2014, 16, 624−630; (c) Selig, P.; Raven, W. Org.
Lett. 2014, 16, 5192−5195; (d) Chen, D. S.; Li, Y. L.; Liu, Y.;
Wang, X. S. Tetrahedron, 2013, 69, 7045-7050; (e) Yu, Z. H.;
Zheng, H. F.; Yuan, W.; Tang, Z. L.; Zhang, A. D.; Shi, D. Q.;
Tetrahedron, 2013, 69, 8137-8141; (f) Wang, K.; Herdtweck, E.;
lin , A.; ACS Comb. Sci. 2012, 14, 316-322; (g) Vander
Mierde, H. .; Van Der Voort, P.; Verpoort, F. Tetrahedron Lett.
2008, 49, 6893-6895; (h) Yan, M. C.; Tu, Z.; Lin, C.; Ko, S.; Hsu,
J.; Yao, C. F. J. Org. Chem. 2004, 69, 1565-1570.
15. Asadi, B.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.;
Moghadam, M.; Mirkhani, V.; Landarani-Isfahani, A. New J.
Chem. 2016, 40, 6171-6184.
16. (a) Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Moghadam,
M.; Mirkhani, V.; Anvar, S.; Mirjafari, A. Synlett 2010, 20, 3104-
3112; (b) Anvar, S.; Mohammadpoor-Baltork, I.; Tangestaninejad,
S.; Moghadam, M.; Mirkhani, V.; Khosropour, A. R.; Landarani-
Isfahani, A.; Kia, R. ACS Comb. Sci. 2014, 16, 93-100.
17. The microwave system used in these experiments includes the
following items: Micro-SYNTH labstation, equipped with a glass
door, a dual magnetron system with pyramid-shaped diffuser,
1000 W delivered power, exhaust system, magnetic stirrer,
‘‘quality pressure’’ sensor for fla able or anic solvents, and a
ATCFO fibre optic system for automatic temperature control.
18. Yamaguchi, K.; Xu, N.; Jin, X.; Suzuki, K.; Mizuno, N. Chem.
Commun. 2015, 51, 10034-10037.
a
Reaction conditions: 1-naphthylamine (1 mmol), 4-fluorobenzaldehyde (1 mmol),
methyl propiolate (1.5 mmol), Fe3O4-TDSN-Bi(III) (8 mol%, 133 mg), 360 W, 85 oC.
Isolated yield.
b
In summary, we have developed an efficient microwave-
promoted synthesis of quinoline derivatives via a one-pot, three-
component reaction of arylamines, arylaldehydes and methyl
propiolate using Fe3O4-TDSN-Bi(III) as
a
recoverable
heterogeneous catalyst. Additionally, this catalytic system was
used for the multicomponent synthesis of symmetric and
unsymmetric bis-quinolines. To date, this is the first report on the
regioselective synthesis of symmetric and unsymmetric bis-
quinolines via
a
one-pot, multicomponent reaction of
dialdehydes/diamines under MW irradiation and solvent-free
conditions, and therefore, can be considered as a useful method
for the preparation of these compounds. This method presents
several distinctive advantages, such as high reaction rates, high to
excellent yields, a simple work-up procedure and easy recovery
of the catalyst.
Acknowledgments
The authors are grateful to the Research Council of the
University of Isfahan for financial support of this work.
Supplementary data
Supplementary data (general procedure and copies of H and 13C
NMR spectra of the products) associated with this article can be
found in the online version at ….
1
References and notes
1. (a) Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Green Chem. 2014, 16,
2958-2975; (b) Amanpour, T.; Zangger, K.; Belaj, F.; Bazgir, A.;
Dallinger, D. ; Kappe, C. O. Tetrahedron 2015, 71, 7159-7169; (c)
Stalling, T.; Pauly, J.; Kröger, D.; Martens, J. Tetrahedron 2015,
71, 8290-8301.
2. (a) Afzal, O.; Kumar, S.; Haider, M. R.; Ali, M. R.; Kumar, R.;
Jaggi, M.; Bawa, S. Eur. J. Med. Chem. 2015, 97, 871-910; (b)
Shobeiri, N.; Rashedi, M.; Mosaffa, F.; Zarghi, A.; Ghandadi, M.;
Ghasemi, A.; Ghodsi, R. Eur. J. Med. Chem. 2016, 114, 14-23.
3. Gorka, A. P.; de Dios, A.; Roepe, P. D. J. Med. Chem. 2013, 56,
5231-5246.
4. Gaurav, A.; Singh, R. Med. Chem. Res. 2014, 23, 5008-5030.
5. Lee, H. W.; Lee, H. S.; Park, J. H.; Cheong, J. J.; Kwon, H. B.;
Kim, K. O.; Ku, C. S.; Kim, M. J.; Park, Y. J.; Ryu, H. W.; Song,
H. H. J. Appl. Biol. Chem. 2015, 58, 1-3.
6. Hazra, A.; Mondal, S.; Maity, A.; Naskar, S.; Saha, P.; Paira, R.;
Sahu, K.B.; Paira, P.; Ghosh, S.; Sinha, C.; Samanta, A.; Banerjee,
S.; Mondal, N. B. Eur. J. Med. Chem. 2011, 46, 2132-2140.