LETTER
One-Pot Synthesis of 5-Methyl-1,2,3-triazoles
1861
enhances the overall yield for aryl azides as the substrates.
Though there are no mechanistic inputs available for this
observation, it may however be assumed that butyl amine
probably interacts with indium centers leading to a change
in the reactivity of these systems.
Supporting Information for this article is available online
10.1055/s-00000083.SunogIpimrfiantoSuIpg
n
fonirtat
ori
References and Notes
Table 2 Derivatization and Characterization of Various Analoguesa
(1) (a) Alam, M. S.; Huang, J.; Ozoe, F.; Matsumura, F.; Ozoe,
Y. Bioorg. Med. Chem. Lett. 2007, 17, 5086. (b) Miura, S.;
Izuta, S. Curr. Drug Targets 2004, 5, 191. (c) Chen, M. D.;
Lu, S. J.; Yuag, G. P.; Yang, S. Y.; Du, X. L. Heterocycl.
Commun. 2000, 6, 421. (d) Biagi, G.; Calderone, V.; Giorgi,
I.; Livi, O.; Martinotti, E.; Martelli, A.; Nardi, A. Farmaco
2004, 59, 397.
I+nBr
InBr
–
–
N
+
N
N
n-BuNH2
N
Ar
N
N
Ar
THF–H2O
+
aq NH4Cl
4
6a–m
1
(2) (a) Finn, M. G.; Fokin, V. V. Chem. Soc. Rev. 2010, 39,
1231; and the articles following this editorial article. (b) Wu,
P.; Fokin, V. V. Aldrichimica Acta 2007, 40, 7.
(3) (a) Tullis, J. S.; VanRens, J. C.; Natchus, M. G.; Clark, M.
P.; De, B.; Hsieh, L. C.; Janusz, M. J. Bioorg. Med. Chem.
Lett. 2003, 13, 1665. (b) Manfredini, S.; Vicentini, C. B.;
Manfrini, M.; Bianchi, N.; Rutigliano, C.; Mischiati, C.;
Gambari, R. Bioorg. Med. Chem. 2000, 8, 2343.
(4) Pathak, T. Chem. Rev. 2002, 102, 1623.
(5) (a) Droumaguet, C. L.; Wang, C.; Wang, Q. Chem. Soc. Rev.
2010, 39, 1233. (b) Lutz, J. F. Angew. Chem. Int. Ed. 2007,
46, 1018. (c) Hua, Y. R.; Flood, A. H. Chem. Soc. Rev. 2010,
39, 1262. (d) Golas, P. L.; Matyjaszewski, K. Chem. Soc.
Rev. 2010, 39, 1338. (e) Kumar, D.; Mishra, B. A.; Shekar,
K. P. C.; Kumar, A.; Akamatsu, K.; Kusaka, E.; Ito, T.
Chem. Commun. 2013, 49, 683. (f) Lewis, J. E. M.;
McAdam, C. J.; Gardinerb, M. G.; Crowley, J. D. Chem.
Commun. 2013, 49, 3398.
Product
Ar
Ph
Mp (°C)
Yield (%)b
6a
6b
6c
6d
6e
6f
60–61
89–99
77
75
69
72
70
73
67
78
75
65
69
72
68
4-BrC6H4
3-ClC6H4
α-C10H7
77–78
116–118
44–46
4-MeOC6H4
β-C10H7
116–117
44–46
6g
6h
6i
4-EtOC6H4
4-ClC6H4
2,5-Cl2C6H3
3-BrC6H4
4-NO2C6H4
4-FC6H4
75–76
98–99
(6) Comprehensive Heterocyclic Chemistry; Wamhoff, H.;
Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.;
Elsevier Science: Oxford, 1996.
(7) (a) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302.
(b) Liang, L. Y.; Astruc, D. Coord. Chem. Rev. 2011, 255,
2933. (c) Chen, Z. Y.; Zheng, D. Q.; Wu, J. Org. Lett. 2011,
13, 848.
6j
90–91
6k
6l
77–78
102–103
120–122
6m
2-[PhCH(OH)]C6H4-
(8) Aromí, G.; Barrios, L. A.; Rubeau, O.; Gamez, P. Coord.
Chem. Rev. 2011, 255, 485.
a Reaction conditions: 1a (2 mmol), 4 (2 mmol), n-BuNH2 (5 mol%),
solvent [THF–H2O (1:1), 10 mL], 50 °C, 6 h.
b Isolated yield.
(9) (a) Mamidyala, S. K.; Finn, M. G. Chem. Soc. Rev. 2010, 39,
1252. (b) El-Sagheer, A. H.; Brown, T. Chem. Soc. Rev.
2010, 39, 1388. (c) Sletten, E. M.; Bertozzi, C. R. Acc.
Chem. Res. 2011, 44, 666. (d) Best, M. D.; Rowland, M. M.;
Bostic, H. E. Acc. Chem. Res. 2011, 44, 686. (e) Holub, J.
M.; Kirshenbaum, K. Chem. Soc. Rev. 2010, 39, 1325.
(10) (a) Kappe, C. O.; Eycken, E. V. Chem. Soc. Rev. 2010, 39,
1280. (b) Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 2010,
39, 1272.
(11) (a) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302.
(b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless,
K. B. Angew. Chem. Int. Ed. 2002, 41, 2596. (c) Angell, Y.;
Burgess, K. Angew. Chem. Int. Ed. 2007, 46, 3649.
(12) McNulty, J.; Keskar, K.; Vemula, R. Chem. Eur. J. 2011, 17,
14727.
(13) (a) Akimova, G. S.; Chistokletov, V. N.; Petrov, A. A. Zh.
Org. Khim. 1968, 4, 389. (b) Krasiński, A.; Fokin, V. V.;
Sharpless, K. B. Org. Lett. 2004, 6, 1237. (c) Hong, L.; Lin,
W.; Zhang, F.; Liu, R.; Zhou, X. Chem. Commun. 2013, 49,
5589.
(14) (a) Zhang, L.; Chen, X. G.; Xue, P.; Sun, H. H. Y.; Williams,
I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. C. J. Am. Chem.
Soc. 2005, 127, 15998. (b) Boren, B. C.; Narayan, S.;
Rasmussen, L. K.; Zhang, L.; Zhao, H. T.; Lin, Z. Y.; Jia, G.
C.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 8923.
(c) Rasmussen, L. K.; Boren, B. C.; Fokin, V. V. Org. Lett.
Table 2 shows the synthesis of 5-methyl-1,2,3-triazole
derivatives 620 under the optimized reaction conditions.
In conclusion, the present method offers an unprecedent-
ed, one-pot, regioselective synthesis of 1-aryl-5-methyl-
1,2,3-triazoles through N/C-heterocyclization of allenyl-
indium bromide across aryl azides. The synthesis is car-
ried out under mild reaction conditions in aqueous
medium and proceeds regioselectively in moderate to
good yields. No traces of the 1,4-disubstituted product are
obtained. The methyl group is amenable to various modi-
fications and thus provides a route of further modification
for building up complex molecules.
Acknowledgment
AHB thanks UGC, India for the award of Raman postdoctoral fel-
lowship under Singh–Obama 21st century knowledge initiative. The
study was supported in part by the US Public Health Service, NIH
NIDA, Grant RO1 DA 13449.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2014, 25, 1859–1862