ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Pd(II)-Catalyzed Ortho-
Trifluoromethylation of Benzylamines
Masanori Miura,† Chen-Guo Feng, Sandy Ma, and Jin-Quan Yu*
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines
Road, La Jolla, California 92037, United States
Received August 28, 2013
ABSTRACT
The Pd(II)-catalyzed ortho-CÀH trifluoromethylation of benzylamines has been achieved utilizing an electrophilic CF3 reagent. Additives, such
as H2O and Ag2O, were found to be crucial for obtaining good yields. This protocol will be useful in medicinal chemistry for the preparation of
ortho-trifluoromethyl-substituted benzylamines.
The incorporation of trifluoromethyl groups in pharma-
ceuticals and biologically active molecules is important to
medicinal chemists because the addition of a trifluoro-
methyl group can improve the metabolic stability and
lipophilicity of such compounds.1 Given such utility, there
has been interest in the development of new methods for the
installation of trifluoromethyl groups onto the aromatic
scaffolds of these important compounds.2 One general
approach toward arene trifluoromethylation is to use tran-
sition metals to forge arene CÀCF3 bonds from prefunc-
tionalized arenes. Currently, arene trifluoromethylation
can be accomplished via copper-catalyzed cross-coupling
of both aryl halides3 and arylboronic acids.4 Palladium-
catalyzed5 and -mediated6 cross-coupling reactions of aryl
halides have also been used to access trifluoromethylated
arenes.
Another approach for arene trifluoromethylation is
centered on the direct conversion of the arene CÀH bond
to a new CÀCF3 bond. One method that has received
recent attention is arene CÀH trifluoromethylation via the
generation of a CF3 radical.7,8 The other method for arene
trifluoromethylation is via transition-metal-catalyzed
CÀH activation. However, there are inherent difficulties
in the development of such a reaction, which stem from the
† Institute for Drug Discovery Research, Astellas Pharma Inc.
(4) Select examples of copper-catalyzed trifluoromethylation of ar-
ylboronic acids: (a) Liu, T.; Shen, Q. Org. Lett. 2011, 13, 2342–2345. (b)
Chu, L.; Qing, F.-L. Org. Lett. 2010, 12, 5060–5063. (c) Senecal, T. D.;
Parsons, A. T.; Buchwald, S. L. J. Org. Chem. 2011, 76, 1174–1176. (d)
Xu, J.; Luo, D.-F.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Fu, Y.; Liu, L.
€
(1) (a) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881–
1886. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem.
Soc. Rev. 2008, 37, 320–330.
(2) (a) Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119–6146. (b)
Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214–231. (c)
Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305–321. (d) Roy, S.; Gregg,
B. T.; Gribble, G. W.; Le, V.-D.; Roy, S. Tetrahedron 2011, 67, 2161–
2195. (e) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470–477.
(f) Besset, T.; Schneider, C.; Cahard, D. Angew. Chem., Int. Ed. 2012, 51,
5048–5050.
ꢀ
Chem. Commun. 2011, 47, 4300–4302. (e) Novak, P.; Lishchynsky, A.;
Grushin, V. V. Angew. Chem., Int. Ed. 2012, 51, 7767–7770. (f) Ye, Y.;
Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034–9037.
(5) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.;
Buchwald, S. L. Science 2010, 328, 1679–1681.
(6) (a) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128,
4632–4641. (b) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006,
128, 12644–12645.
(3) For select examples of copper-catalyzed trifluoromethylation of
aryl halides, see: (a) Oishi, M.; Kondo, H.; Amii, H. Chem. Commun.
(7) For reviews on radical-mediated trifluoromethylation, see:
Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950–8959.
€
2009, 1909–1911. (b) Knauber, T.; Arikan, F.; Roshenthaler, G.-V.;
Goossen, L. J. Chem.;Eur. J. 2011, 17, 2689–2697. (c) Morimoto, H.;
Tsubogo, T.; Litvinas, N. D.; Hartwig, J. Angew. Chem., Int. Ed. 2011,
50, 3793–3708. (d) Weng, Z.; Lee, R.; Jia, W.; Yuan, Y.; Wang, W.;
Feng, X.; Huang, K. W. Organometallics 2011, 30, 3229–3232. (e)
Zanardi, A.; Novikov, M. A.; Martin, E.; Buchholz, J.-B.; Grushin,
V. V. J. Am. Chem. Soc. 2011, 133, 20901–20913. (f) Tomashenko, O. A.;
(8) For select recent examples, see: (a) Nagib, D. A.; MacMillan,
D. W. C. Nature 2011, 480, 224–228. (b) Ye, Y.; Lee, S. H.; Sanford,
M. S. Org. Lett. 2011, 13, 5464–5467. (c) Hafner, A.; Brase, S. Angew.
Chem., Int. Ed. 2012, 51, 3713–3715. (d) Fujiwara, Y.; Dixon, J. A.;
Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.;
Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 1494–
ꢀ
Escudero-Adan, E. C.; Martı
´
nez Belmonte, M.; Grushin, V. V. Angew.
Chem., Int. Ed. 2011, 50, 7655–7659.
1497. (e) Mejıa, E.; Togni, A. ACS Catal. 2012, 2, 521–527.
´
r
10.1021/ol402471y
XXXX American Chemical Society