2 G. Hennrich and E. V. Anslyn, Chem.–Eur. J., 2002, 8,
2218.
3 J. W. Steed, Chem. Commun., 2006, 2637.
4 Y. Bai, B. G. Zhang, J. Xu, C. Y. Duan, D. B. Dang, D. J. Liu and
Q. J. Meng, New J. Chem., 2005, 29, 777.
5 A. Vacca, C. Nativi, M. Cacciarini, R. Pergoli and S. Roelens,
J. Am. Chem. Soc., 2004, 126, 16456.
6 H. Ihm, S. Yun, H. G. Kim, J. K. Kim and K. S. Kim, Org. Lett.,
2002, 4, 2897.
7 V. Amendola, M. Boiocchi, L. Fabbrizzi and A. Palchetti,
Chem.–Eur. J., 2005, 11, 5648.
8 C. Schmuck and M. Schwegmann, J. Am. Chem. Soc., 2005, 127,
3373.
9 Y. Bai, B.-G. Zhang, C. Y. Duan, D.-B. Dang and Q.-J. Meng,
New J. Chem., 2006, 30, 266.
10 D. R. Turner, M. J. Paterson and J. W. Steed, J. Org. Chem., 2006,
71, 1598.
11 M. H. Filby, T. D. Humphries, D. R. Turner, R. Kataky, J.
Kruusma and J. W. Steed, Chem. Commun., 2006, 156.
12 W. J. Belcher, M. Fabre, T. Farhan and J. W. Steed, Org. Biomol.
Chem., 2006, 4, 781.
13 J. Zhang, A. M. Bond, J. Belcher, K. J. Wallace and J. W. Steed, J.
Phys. Chem. B, 2003, 107, 5777.
14 K. J. Wallace, W. J. Belcher, D. R. Turner, K. F. Syed and J. W.
Steed, J. Am. Chem. Soc., 2003, 125, 9699.
15 L. O. Abouderbala, W. J. Belcher, M. G. Boutelle, P. J. Cragg, J.
W. Steed, D. R. Turner and K. J. Wallace, Proc. Natl. Acad. Sci.
U. S. A., 2002, 99, 5001.
16 L. O. Abouderbala, W. J. Belcher, M. G. Boutelle, P. J. Cragg, M.
Fabre, J. Dhaliwal, J. W. Steed, D. R. Turner and K. J. Wallace,
Chem. Commun., 2002, 358.
17 C. E. Willans, K. M. Anderson, P. C. Junk, L. J. Barbour and J.
W. Steed, Chem. Commun., 2007, 3634.
18 V. Amendola, M. Boiocchi, B. Colasson, L. Fabbrizzi,
M.-J. R. Douton and F. Ugozzoli, Angew. Chem., Int. Ed., 2006,
45, 6920.
19 S. O. Kang, D. VanderVelde, D. Powell and K. Bowman-James, J.
Am. Chem. Soc., 2004, 126, 12272.
´
20 M. Alajarın, A. Pastor, R. A. Orenes and J. W. Steed, J. Org.
Chem., 2002, 67, 7091.
21 D. R. Turner, A. Pastor, M. Alajarın and J. W. Steed, Struct.
´
Bonding, 2004, 108, 97.
´
22 M. Alajarın, A. Pastor, R. A. Orenes, J. W. Steed and R. Arakawa,
Chem.–Eur. J., 2004, 10, 1383.
23 Y. L. Cho, D. M. Rudkevich, A. Shivanyuk, K. Rissanen and J.
Rebek, Chem.–Eur. J., 2000, 6, 3788.
24 C. Laurence and M. Berthelot, Perspect. Drug Discovery Des.,
2000, 18, 39.
25 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,
G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.
Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V.
Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,
P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,
A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D.
Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A.
G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T.
Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.
Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W.
Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03, Gaussian,
Inc., Wallingford, CT, 2004.
Fig. 3 DFT model of 1bÁClÀ showing the urea tape ‘zipper’ motif.
to the expected m/z for [1b + X À 2PF6]+ and [1b + X À
3PF6]2+ (X = Cl, Br, I) except in the case of FÀ which gives
only [1b + F À 2PF6]+. No peaks assignable to dimeric
capsules were observed. These experiments show that the hosts
bind well to halides but remain as monomers. In confirmation,
the 1H NMR spectra of 1bÁ(PF6)3 both alone and in the
presence of one equivalent of ClÀ proved invariant with
concentration in acetone-d6.
We carried out a DFT optimization for 1bÁClÀ, using
B3LYP and a mixed basis within the Gaussian 03 program.25
The basis consisted of 6-311++G* on chloride, 6-31+G* on
oxygen and nitrogen, 4-31G on carbon and hydrogen. The
hydrogen atoms involved in possible hydrogen-bonding re-
gions were further augmented with a diffuse set of s and p
functions.10 The DFT model of the 3-up conformer of 1bÁCl is
shown in Fig. 3. The model reproduces the expected trigonal
prismatic hydrogen bonded arrangement around the ClÀ ion
comprising three NHÁ Á ÁClÀ and three pyridinium CHÁ Á ÁClÀ
interactions, consistent with previous crystallographic and
NMR spectroscopic results in related compounds, and shows
that this anion binding mode is compatible with the proposed
urea tape ‘zipper’ motif.
In conclusion we have shown that in relatively non-polar
solvents, intramolecular hydrogen bonding between remote
functional groups can increase the preorganisation of an
anion-binding unimolecular capsule. This work suggests new
strategies for conformational control and increasing preorga-
nisation in flexible anion hosts.
We thank the EPSRC for a studentship (D.R.T) and for
provision of computing facilities.
Notes and references
1 A. Metzger, V. M. Lynch and E. V. Anslyn, Angew. Chem., Int. Ed.
Engl., 1997, 36, 862.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 1395–1397 | 1397