C O M M U N I C A T I O N S
Table 2. Substrate Scope for the Asymmetric Direct Aldol
Reactiona
entry
R
X
t
cat mol %
yield %b
ee %c
1
Ph
Ph
Ph
X1
X2
X3
X1
X2
X1
X1
X2
X1
X1
X4
X4
X4
X4
X4
X4
X4
X4
X5
X5
X6
X6
X7
X7
X1
X4
X5
X7
48 h
5
10
10
5
94
97
93
72
75
94
90
91
85
80
91
52
56
96
83
92
85
90
90
83
35
92
70
97
65
41
40
35
96
2
22 h
96
97
96
94
96
95
94
93
89
94(R)h
94
94
93
93
91
91
91
98
98
82
86
91
96
93
90
96
90
3
33 h
4
4-MeC6H4
4-MeOC6H4
4-ClC6H4
3-MeC6H4
3-BrC6H4
3-BrC6H4
2-thiophenyl
Ph
48 h
Figure 2. The calculated transition state of aldol reaction of keto ester with
acetone catalyzed by 1a-HCOOH. The geometries were optimized at the HF/
6-31G* level. The relative energies (kcal/mol) are with HF/6-31G* in () and
B3LYP/6-311G** and IEFPCM (acetone) in [ ].
5
96 h
5
6
22 h
10
5
7
38 h
8
17 h
20
10
10
30
30
30
30
30
30
30
30
30
30
30
30
30
30
20
30
30
30
9
48 h
10
11
12
13
14
15
16
17
18
19
20
21d
22d
23e
24e,f
25g
26g
27g
28e,g
96 h
mol. Thus, TS2 was found to be the favorable transition state and
led to the formation of the major R-product in accordance with
the experimental results.
6 days
6 days
6 days
4 days
6 days
3 days
5 days
6 days
4 days
4 days
4 days
10 days
2 days
2 days
3 days
6 days
4.5 days
3 days
4-MeC6H4
4-MeOC6H4
4-FC6H4
3-MeC6H4
3-FC6H4
2-thiophenyl
2-naphthyl
4-NO2C6H4
3-NO2C6H4
Ph
In conclusion, we have presented the example of introducing
the amino acids into the bispidine framework as catalysts for
highly enantioselective direct aldol reactions of functionalized
ketones. Catalyst 1a demonstrated high enantioselectivity and
yield (up to 97% yield and 98% ee) for a wide substrate scope
including R-keto phosphonates, R-keto esters, and R,R-dialkoxy
ketones under mild conditions. A theoretical study of transition
structures revealed that protonated piperidine was important for
the reactivity and enantioselectivity of this reaction. Further
exploration of this catalyst in other important reactions is
4-ClC6H4
4-NO2C6H4
4-NO2C6H4
Ph
Ph
4-NO2C6H4
4-NO2C6H4
underway in our laboratory.
a Unless otherwise noted, all reactions were carried out with 0.1 mmol
functionalized ketone, 0.5 mL of acetone, and 1a/HCOOH (1/1) at 0 °C.
b Isolated yield. c Determined by chiral HPLC. d With 30 mol % catalyst
system 1a/2,4-dinitrophenol (1/1). e The reaction was carried out with 0.1
Acknowledgment. We appreciate the National Natural Science
Foundation of China (No. 20732003) for financial support. We
also thank Sichuan University Analytical & Testing Center for
NMR analysis.
Supporting Information Available: Experimental procedures,
spectral and analytical data for the reaction products. This material is
mmol
4-NO2C6H4CHO,
0.5
mL
of
acetone,
and
1a/
3,3′,5,5′-tetrabromobiphenol (1/1) at 0 °C. f Cyclohexanone as donor, dr
4:1. g 2-Butanone (0.5 mL) was used instead of acetone. h See refs4d, e.
References
85% yield and 91% ee (Table 2, entry 17). Another kind of
important functional substrate, R,R-dialkoxy ketones, was also
examined for the first time in the presence of catalyst 1a and
different additives (Table 2, entries 19-22). The relative lower
reaction rate could be compensated by prolonging reaction time,
and up to 98% ee was obtained for electron-deficient aromatic
acetal ketones. When 4-nitrobenzaldehyde was used as an aldol
reaction acceptor, both acetone and cyclohexanone could react
smoothly with high yields and 91 and 96% ee, respectively (Table
2, entries 23 and 24). The reactions between 2-butanone and
different functional ketones furnished linear aldol adducts with up
to 96% ee and moderate yields (entries 25-27), while 4-nitroben-
zaldehyde provided a mixture aldol adducts with high ee (Table
2, entry 28, see Supporting Information).
(1) Mahrwald, R. Modern Aldol Reactions; Wiley-VCH: Weinheim, Germany,
2004; Vols. 1–2.
(2) (a) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122,
2395. (b) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386.
(3) (a) List, B. Acc. Chem. Res. 2004, 37, 548. (b) Notz, W.; Tanaka, F.; Barbas,
C. F., III Acc. Chem. Res. 2004, 37, 580. (c) Northrup, A. B.; MacMillan,
D. W. C. Science 2004, 305, 1752. (d) Torii, H.; Nakadai, M.; Ishihara, K.;
Saito, S.; Yamamoto, H. Angew. Chem., Int. Ed. 2004, 43, 1983. (e) Tang,
Z.; Jiang, F.; Yu, L. T.; Cui, X.; Gong, L. Z.; Mi, A. Q.; Jiang, Y. Z.; Wu,
Y. D. J. Am. Chem. Soc. 2003, 125, 5262. (f) Tang, Z.; Jiang, F.; Cui, X.;
Gong, L. Z.; Mi, A. Q.; Jiang, Y. Z.; Wu, Y. D. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 5755. (g) Raj, M.; Vishnumaya; Ginotra, S. K.; Singh,
V. K. Org. Lett. 2006, 8, 4097. (h) Kano, T.; Takai, J.; Tokuda, O.; Maruoka,
K. Angew. Chem., Int. Ed. 2005, 44, 3055. (i) Samanta, S.; Liu, J.; Dodda,
R.; Zhao, C. G. Org. Lett. 2005, 7, 5321. (j) Mase, N.; Nakai, Y.; Ohara,
N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III J. Am. Chem. Soc.
2006, 128, 734. (k) Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.;
Urushima, T.; Shoji, M. Angew. Chem., Int. Ed. 2006, 45, 958. (l) Cheng,
C.; Sun, J.; Wang, C.; Zhang, Y.; Wei, S.; Jiang, F.; Wu, Y. D. Chem.
Commun. 2006, 215. (m) Ramasastry, S. S. V.; Zhang, H.; Tanaka, F.;
Barbas, C. F., III J. Am. Chem. Soc. 2007, 129, 288. (n) Kano, T.;
Yamaguchi, Y.; Tanaka, Y.; Maruoka, K. Angew. Chem., Int. Ed. 2007, 46,
1738. (o) Co´rdova, A.; Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu,
Y. Chem.—Eur. J. 2006, 12, 5383. (p) Luo, S. Z.; Xu, H.; Li, J. Y; Zhang,
L.; Cheng, J. P. J. Am. Chem. Soc. 2007, 129, 3074. (q) Mukherjee, S.;
Yang, J. W.; Hoffmann, S.; List, B. Chem. ReV. 2007, 107, 5471. (r) Casas,
J.; Engqvist, M.; Ibrahem, I.; Kaynak, B.; Co´rdova, A. Angew. Chem., Int.
Ed. 2005, 44, 1343.
The mechanism of direct aldol reaction between R-keto ester
and acetone catalyzed by the primary-secondary diamine catalyst
1a has been investigated by theoretical simulation as shown in
Figure 2. Simillar to the diamine catalyst,3p in the enamine complex
from the primary amine of 1a and acetone, the phenyl group was
positioned equatorially with the enamine and shielded one face of
the enamine, while the protonated piperidine could interact with
the keto group by hydrogen bond3l,6 and position the attachment
to the unshielded face of the enamine. The H-bond between the
substrate and catalyst 1a in TS2 was shorter than that in TS1, which
indicated stronger interaction to keto in TS2. On the other hand,
TS2 was also energetically more stable than TS1 by ∼3.7 kcal/
(4) (a) Bøgevig, A.; Kumaragurubaran, N.; Jørgensen, K. A. Chem. Commun.
2002, 620. (b) Tokuda, O.; Kano, T.; Gao, W. G.; Ikemoto, T.; Maruoka,
K. Org. Lett. 2005, 7, 5103. (c) Samanta, S.; Zhao, C. G. J. Am. Chem. Soc.
2006, 128, 7442. (d) Tang, Z.; Cun, L. F.; Cui, X.; Mi, A. Q.; Jiang, Y. Z.;
Gong, L. Z. Org. Lett. 2006, 8, 1263. (e) Wang, F.; Xiong, Y.; Liu, X. H.;
Feng, X. M. AdV. Synth. Catal. 2007, 349, 2665.
(5) Spieler, J.; Huttenloch, O.; Waldmann, H. Eur. J. Org. Chem. 2000, 391.
(6) Pansare, S. V.; Pandya, K. J. Am. Chem. Soc. 2006, 128, 9624.
JA800839W
9
J. AM. CHEM. SOC. VOL. 130, NO. 17, 2008 5655