412
M. Abid et al.
LETTER
(7) (a) Varma, R. S.; Dahiya, R.; Kumar, S. Tetrahedron Lett.
1997, 38, 2039. (b) Walla, P.; Kappe, C. O. Chem. Commun.
2004, 594. (c) Loupy, A. Microwaves in Organic Synthesis;
Wiley-VCH: Weinheim, 2005. (d) Kappe, C. O.; Stadler, A.
Microwaves in Organic and Medicinal Chemistry; Wiley-
VCH: Weinheim, 2005. (e) Landge, S. M.; Atanassova, V.;
Thimmaiah, M.; Török, B. Tetrahedron Lett. 2007, 48, 5161.
(8) Banik, B. K.; Samajdar, S.; Banik, I. J. Org. Chem. 2004, 69,
213.
(9) (a) De’Silva, C.; Walker, D. A. J. Org. Chem. 1998, 63,
6715. (b) McIntosh, J. M. J. Org. Chem. 1988, 53, 447.
(c) Abid, M.; Landge, S.; Török, B. Org. Prep. Proced. Int.
2006, 38, 495. (d) Abid, M.; Spaeth, A.; Török, B. Adv.
Synth. Catal. 2006, 348, 2191. (e) Abid, M.; Teixeira, L.;
Török, B. Tetrahedron Lett. 2007, 48, 4047.
(10) All reactants including the catalyst, montmorillonite K-10,
were purchased from Aldrich and used without further
purification. The 1H NMR and 13C NMR spectra were
obtained on a 300 MHz Varian NMR spectrometer in
CDCl3. Tetramethylsilane or the residual solvent signal was
used as reference. The mass spectrometric identification of
the products was carried out on an Agilent 6850 GC and
5973 MS system (70 eV electron impact ionization) using a
30 m long DB-5 type column (J&W Scientific). The melting
points were uncorrected and were recorded on a MEL-
TEMP apparatus.
Acknowledgment
The financial support provided by University of Massachusetts Bo-
ston and National Institute of Health (AG025777-02) is gratefully
acknowledged.
References and Notes
(1) (a) Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000,
1045; and references cited therein. (b) Fürstner, A.; Szillat,
H.; Gabor, B.; Mynott, R. J. Am. Chem. Soc. 1998, 120,
8305. (c) Török, M.; Abid, M.; Mhadgut, S. C.; Török, B.
Biochemistry 2006, 45, 5377. (d) Zhang, Y.; Wada, T.;
Sasabe, H. Chem. Commun. 1996, 621. (e) Sundberg, R. J.
Indoles; Academic Press: London, 1996. (f) Robinson, B.
The Fischer Indole Synthesis; John Wiley and Sons:
Chichester, 1982. (g) Török, B.; Abid, M.; London, G.;
Esquibel, J.; Török, M.; Mhadgut, S. C.; Yan, P.; Prakash, G.
K. S. Angew. Chem. Int. Ed. 2005, 44, 3086.
(2) (a) Kohling, P.; Schmidt, A. M.; Eilbracht, P. Org. Lett.
2003, 5, 3213. (b) Katritzky, A. R.; Fali, C. N.; Li, J. J. Org.
Chem. 1997, 62, 4148. (c) Fayol, A.; Fang, Y.-Q.; Lautens,
M. Org. Lett. 2006, 8, 4203. (d) Wagaw, S.; Yang, B. H.;
Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 6621.
(e) Bremner, J. B.; Samosorn, S.; Ambrus, J. I. Synthesis
2004, 2653. (f) Myznikov, Y. E.; Koldobskii, G. I.;
Vasil’eva, I. N.; Ostrovskii, V. A. Zh. Org. Khim. 1988, 24,
1550. (g) Hayakawa, K.; Yasukouchi, T.; Kanematsu, K.
Tetrahedron Lett. 1986, 27, 1837. (h) Martin, P. Helv.
Chim. Acta 1984, 67, 1647. (i) Terashima, M.; Fujioka, M.
Heterocycles 1982, 19, 91. (j) Ikeda, M.; Ohno, K.; Uno, T.;
Tamura, Y. Tetrahedron Lett. 1980, 21, 3. (k) Itahara, T.
Synthesis 1979, 151. (l) Itahara, T. Heterocycles 1986, 24,
2557. (m) Aggarwal, R.; Benedetti, F.; Berti, F.; Buchini, S.;
Colombatti, A. Chem. Eur. J. 2003, 9, 3132. (n) Bourgeois,
P.; Mesdouze, J.; Philogene, E. J. Heterocycl. Chem. 1983,
20, 1043.
(3) (a) Fischer, E. Ber. Dtsch. Chem. Ges. 1886, 19, 1563.
(b) Hughes, D. L. Org. Prep. Proced. Int. 1993, 25, 607.
(c) Reissert, A. Ber. Dtsch. Chem. Ges. 1896, 29, 655.
(d) Blasko, G.; Kerekes, P.; Makleit, S. Alkaloids 1987, 31,
1. (e) Madelung, W. Ber. Dtsch. Chem. Ges. 1912, 45, 3521.
(f) Brown, R. K. In Indoles, Part 1; Houlihan, W. J., Ed.;
Wiley: New York, 1972, 385. (g) Zeni, G.; Larock, R. C.
Chem. Rev. 2004, 104, 2285. (h) Kondo, Y.; Sakamoto, T.;
Yamanaka, H. Heterocycles 1989, 29, 1013. (i) Arcadi, A.;
Cacchi, S.; Marinelli, F. Tetrahedron Lett. 1989, 30, 2581.
(j) Cacchi, S.; Fabrizi, G.; Marinelli, F.; Moro, L.; Pace, P.
Synlett 1997, 1363. (k) Cacchi, S.; Fabrizi, G.; Parisi, L. M.
Synthesis 2004, 1889. (l) Kabalka, G. W.; Wang, L.; Pagni,
R. M. Tetrahedron 2001, 57, 8017.
General Procedure for the Synthesis of N-Acylindoles:
An amide (1.0 mmol) and 2,5-dimethoxytetrahydrofuran
(2.0 mmol) were dissolved in 3 mL of CH2Cl2 in a round-
bottomed flask, then K-10 (500 mg) was added. After 5 min
stirring, the solvent was removed to obtain the mixture of
reactants adsorbed on the catalyst surface. The dry mixture
was transferred into a glass reaction vial and irradiated in the
microwave reactor (CEM Discover Benchmate, 80 °C).
During optimization, the progress of the reaction was
monitored by TLC and GC-MS to determine the necessary
reaction times. After satisfactory conversion, CH2Cl2 was
added to the cold mixture, and the product was separated
from the catalyst by filtration. The products were isolated as
crystals or oils and purified by flash chromatography. All
products showed satisfactory spectral data (MS, 1H and 13
C
NMR). Here, the full spectral characterization is given for
only the previously unknown products. Such data for the
known compounds synthesized in this study are available
from the authors.
1-(4-Fluorobenzoyl) indole (Table 1, Entry 5): mp 82.9–
84.3 °C (MeOH); 1H NMR (300.12 MHz, CDCl3): d = 8.36
(d, J = 7.8 Hz, 1 H), 7.79–7.74 (m, 2 H), 7.61 (d, J = 7.8 Hz,
1 H), 7.41–7.29 (m, 2 H), 7.27–7.18 (m, 3 H), 6.61 (d,
J = 3.9 Hz, 1 H) ppm; 13C NMR (75.474 MHz, CDCl3): d =
166.6, 132.0, 131.8, 127.4, 126.9, 125.1, 124.2, 123.6,
121.1, 120.1, 116.4, 115.8, 108.9 ppm; MS for
(4) (a) Itahara, T. Synthesis 1979, 151. (b) Bremner, J. B.;
Samosorn, S.; Ambrus, J. I. Synthesis 2004, 2653.
(5) (a) Corma, A. Chem. Rev. 1995, 95, 559. (b) Gates, B. C.
Catalysis by Solid Acids, In Encyclopedia of Catalysis, Vol.
2; Horváth, I., Ed.; Wiley: New York, 2003, 104.
(6) (a) Balogh, M.; Laszlo, P. Organic Chemistry Using Clays;
Springer: Berlin, Heidelberg, 1993. (b) Szöllösi, G.; Török,
B.; Baranyi, L.; Bartók, M. J. Catal. 1998, 179, 619.
(c) Török, B.; London, G.; Bartók, M. Synlett 2000, 631.
(d) Abid, M.; Török, B. Adv. Synth. Catal. 2005, 347, 1797.
(e) Landge, S. M.; Schmidt, A.; Outerbridge, V.; Török, B.
Synlett 2007, 1600. (f) Dasgupta, S.; Török, B. Org. Prep.
Proced. Int 2008, 40, 1.
C15H10FNO(239): m/z (%) = 239 (40) [M+], 123 (100), 116
(5), 95 (30), 75 (15).
Biphenyl-4-yl(1H-indole-1-yl)methanone (Table 1, Entry
8): mp 98.2–100.1 °C (MeOH); 1H NMR (300.12 MHz,
CDCl3): d = 8.43 (d, J = 8.1 Hz, 1 H), 7.84–7.80 (m, 2 H),
7.76–7.67 (m, 2 H), 7.66–7.60 (m, 3 H), 7.52 (m, 3 H), 7.37–
7.32 (m, 3 H), 6.65 (d, J = 3.6 Hz, 1 H) ppm; 13C NMR
(75.474 MHz, CDCl3): d = 166.0, 144.9, 130.0, 129.1, 128.4,
128.4, 127.7, 127.6, 127.4, 126.9, 121.0, 116.5, 108.7 ppm;
MS for C21H15NO(297): m/z (%) = 297 (30) [M+], 181 (100),
152 (60), 116 (15), 77 (5).
Synlett 2008, No. 3, 410–412 © Thieme Stuttgart · New York