expected when two amine equivalents are employed. We found
that the reaction of chlorobenzene with one equivalent of
n-propylamine gives the desired N-propylaniline in only 86%
yield. This could not be compensated by increasing the
amount of added base but it might be still the method of
choice when precious amines are used in this reaction.
We then decided to explore if cuprous oxide can be used to
catalyze the amidation of aryl halides.13 Using essentially the
same conditions as described above, we realized that aryl
bromides and iodides react with aliphatic and aromatic amides
in high yields. Benzamide and several aryl iodides gave the
corresponding N-arylbenzamides in 92–97% yields (Table 3,
entries 1–3). Coupling of primary and secondary aliphatic
amides with iodobenzene gave N-phenylacetamide and
N-methyl-N-phenylacetamide in 81–88% yield (entries 4 and 5).
The copper(I) catalyzed reaction of aryl bromides gave slightly
lower yields. For example, arylation of benzamide with
iodobenzene and bromobenzene furnished N-phenylbenzamide
in 97 and 81% yield, respectively (entries 1 and 6). The same
trend was observed with acetamide (entries 4 and 8). Various
attempts to extend the Cu2O catalyzed amidation method
to aryl chlorides were unsuccessful. This is not surprising
as copper-catalyzed amidation of aryl chlorides generally
requires harsh reaction conditions or the use of the aryl halide
as solvent.10a,14
R. J. Twieg, Tetrahedron Lett., 2005, 46, 2997–3001; (g) H. Zhang,
Q. Cai and D. Ma, J. Org. Chem., 2005, 70, 5164–5173; (h) H. Rao,
H. Fu, Y. Jiang and Y. Zhao, J. Org. Chem., 2005, 70, 8107–8109;
(i) B. De Lange, M. H. Lambers-Verstappen, L. Schmieder-van de
Vondovoroort, N. Sereinig, R. de Rijk, A. H. M. de Vries and
J. G. de Vries, Synlett, 2006, 3105–3109; (j) X. Zhu, Y. Ma, L. Su,
H. Song, G. Chen, D. Liang and Y. Wan, Synthesis, 2006,
3955–3962; (k) A. Shafir and S. L. Buchwald, J. Am. Chem. Soc.,
2006, 128, 8742–8743; (l) R. A. Altman, E. D. Koval and
S. L. Buchwald, J. Org. Chem., 2007, 72, 6190–6199;
(m) L. Rout, S. Jammi and T. Punniyamurthy, Org. Lett., 2007,
9, 3397–3399; (n) R. A. Altman, A. Shafir, A. Choi, P. A. Lichtor
and S. L. Buchwald, J. Org. Chem., 2008, 73, 284–286.
3 Selected examples of copper-catalyzed amination of 2-halobenzoic
acids: (a) C. Wolf and X. Mei, J. Am. Chem. Soc., 2003, 125,
10651–10658; (b) M. L. Docampo Palacios and R. F. Pellon
Comdom, Synth. Commun., 2003, 33, 1771–1775; (c) X. Mei and
C. Wolf, J. Org. Chem., 2005, 70, 2299–2305; (d) X. Mei and
C. Wolf, J. Am. Chem. Soc., 2004, 126, 14736–14737; (e) X. Mei
and C. Wolf, Chem. Commun., 2004, 2078–2079; (f) X. Mei,
A. T. August and C. Wolf, J. Org. Chem., 2006, 71, 142–149;
(g) C. Wolf, S. Liu, X. Mei, A. T. August and M. D. Casimir,
J. Org. Chem., 2006, 71, 3270–3273; (h) S. Liu, J. P. C. Pestano and
C. Wolf, Synthesis, 2007, 3519–3527.
4 (a) X. Guo, H. Rao, H. Fu, Y. Jiang and Y. Zhao, Adv. Synth.
Catal., 2006, 348, 2197–2202; (b) R. A. Altman, K. W. Anderson
and S. L. Buchwald, J. Org. Chem., 2008, 73, 5167–5169.
5 (a) J. F. Hartwig, M. Kawatsura, S. I. Hauck, K. Shaughnessy and
L. M. Alcazar-Roman, J. Org. Chem., 1999, 64, 5575–5580;
(b) J. Yin and S. L. Buchwald, Org. Lett., 2000, 2, 1101–1104;
(c) J. Yin and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124,
6043–6048; (d) X. Huang, K. W. Anderson, D. Zim, L. Jiang,
A. Klapars and S. L. Buchwald, J. Am. Chem. Soc., 2003, 125,
6653–6655; (e) F. Shi, M. R. Smith III and R. E. Maleczka Jr, Org.
Lett., 2006, 8, 1411–1414; (f) Q. Shen and J. F. Hartwig, J. Am.
Chem. Soc., 2007, 129, 7734–7735; (g) T. Ikawa, T. E. Barder,
M. R. Biscoe and S. L. Buchwald, J. Am. Chem. Soc., 2007, 129,
13001–13007; (h) B. P. Fors, P. Krattiger, E. Strieter and
S. L. Buchwald, Org. Lett., 2008, 10, 3505–3508.
In summary, we have developed an efficient cuprous oxide
catalyzed procedure for the amination and amidation of
aryl halides. A wide range of primary and secondary amines
including aniline and diphenylamine were found to react with
aryl iodides, bromides and chlorides in the presence of 5 mol%
of Cu2O in NMP. The corresponding arylated amines were
obtained in up to 95% yield. The same catalyst has been
successfully employed in the amidation of aryl bromides and
iodides. The introduction of this generally useful amination
and amidation method, which utilizes inexpensive cuprous
oxide as catalyst and does not require the use of precious
ligands, is expected to be particularly useful in industrial
applications.
6 M. McLaughlin, M. Palucki and I. W. Davies, Org. Lett., 2006, 8,
3311–3314.
7 R. R. Poondra and N. J. Turner, Org. Lett., 2005, 7, 863–866.
8 A. Ghosh, J. E. Sieser, M. Riou, W. Cai and L. Rivera-Ruiz, Org.
Lett., 2003, 5, 2207–2210.
9 P. J. Manley and M. T. Bilodeau, Org. Lett., 2004, 6, 2433–2435.
10 (a) A. Klapars, X. Huang and S. L. Buchwald, J. Am. Chem. Soc.,
2002, 124, 7421–7428; (b) L. Jiang, G. E. Job, A. Klapars and
S. L. Buchwald, Org. Lett., 2003, 5, 3667–3669;
(c) R. Hosseinzadeh, M. Tajbaksh, M. Mohadjerani and
H. Mehdinejad, Synlett, 2004, 1517–1520; (d) W. Deng,
Y.-F. Wang, Y. Zou, L. Liu and Q.-X. Guo, Tetrahedron Lett.,
2004, 45, 2311–2315; (e) A. Klapars, S. Parris, K. W. Anderson
and S. L. Buchwald, J. Am. Chem. Soc., 2004, 126, 3529–3533;
(f) E. R. Strieter, D. G. Blackmond and S. L. Buchwald, J. Am.
Chem. Soc., 2005, 127, 4120–4121; (g) K. Moriwaki, K. Satoh,
M. Takada, Y. Ishino and T. Ohno, Tetrahedron Lett., 2005, 46,
7559–7562; (h) S. Chandrasekhar, S. S. Sultana, S. R. Yaragorla
and N. R. Reddy, Synthesis, 2006, 839–842; L. D. S. Yadav,
B. S. Yadav and V. K. Rai, Synthesis, 2006, 1868–1872.
11 For copper catalyzed amination methods that do not rely on the use
of additional ligands, see: (a) K. Okano, H. Tokuyama and
T. Fukuyama, Org. Lett., 2003, 5, 4987–4990; (b) S. U. Son,
I. K. Park, J. Park and T. Hyeon, Chem. Commun., 2004, 778–779;
(c) T. Kubo, C. Katoh, K. Yamada, K. Okano, H. Tokuyama and
T. Fukuyama, Tetrahedron, 2008, 64, 11230–11236.
12 Chlorobenzene and n-propylamine did not react in the absence of
catalytic amounts of Cu2O. Starting materials were recovered
almost quantitatively using the conditions given in Table 1 but
no cuprous oxide. For metal-free amination of aryl halides via the
benzyne mechanism in the presence of a strong base in refluxing
DMSO, see: L. Shi, M. Wang, C.-A. Fan, F.-M. Zhang and
Y.-Q. Tu, Org. Lett., 2003, 5, 3515–3517.
Funding from NIH (RO1 AI060792) is gratefully acknowledged.
Notes and references
1 Selected examples: (a) J. F. Hartwig, M. Kawatsura, S. I. Hauck,
K. H. Shaughnessy and L. M. Alcazar-Roman, J. Org. Chem., 1999,
64, 5575–5580; (b) J. P. Wolfe, H. Tomori, J. P. Sadighi, J. Yin and
S. L. Buchwald, J. Org. Chem., 2000, 65, 1158–1174; (c) Q. Shen,
S. Shecar, J. P. Stambuli and J. F. Hartwig, Angew. Chem., Int. Ed.,
2005, 44, 1371–1375; (d) L. E. Hagopian, A. N. Campbell,
J. A. Golen, A. L. Rheingold and C. Nataro, J. Organomet. Chem.,
2006, 691, 4890–4900; (e) X. Xie, T. Y. Zhang and Z. Zhang, J. Org.
Chem., 2006, 71, 6522–6529; (f) A. A. Trabanco, J. A. Vega and
M. A. Fernandez, J. Org. Chem., 2007, 72, 8146–8148;
(g) B. P. Fors, P. Krattiger, E. Strieter and S. L. Buchwald, Org.
Lett., 2008, 10, 3505–3508; (h) Q. Shen and J. F. Hartwig, Org. Lett.,
2008, 10, 4109–4112; (i) D. S. Surry and S. L. Buchwald, Angew.
Chem., Int. Ed., 2008, 47, 6338–6361; (j) Q. Shen, T. Ogata and
J. F. Hartwig, J. Am. Chem. Soc., 2008, 130, 6586–6596.
2 (a) D. Ma, Y. Zhang, J. Yao, S. Wu and F. Tao, J. Am. Chem.
Soc., 1998, 120, 12459–12467; (b) F. Y. Kwong, A. Klapars and
S. L. Buchwald, Org. Lett., 2002, 4, 581–584; (c) J. C. Antilla,
A. Klapars and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124,
11684–11688; (d) D. Ma, Q. Cai and H. Zhang, Org. Lett., 2003, 5,
2453–2455; (e) H.-J. Cristeau, P. P. Cellier, J.-F. Spindler and
M. Taillefer, Chem.–Eur. J., 2004, 10, 5607–5622; (f) Z. Lu and
13 Buchwald previously reported that Cu2O catalyzes the amidation of
3,5-dimethylphenyl iodide with N-methylformamide: see ref. 10a.
14 H. Renger, Synthesis, 1985, 856–860.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 1715–1717 | 1717