T. Konno et al. / Tetrahedron Letters 49 (2008) 2106–2110
2109
Without RB(OH)2
Michael adduct, and the rhodium species coordinated with
(S)-BINAP may be regenerated.
[Rh(C8H12)2]BF4 (5 mol %)
Toluene/H2O (v/v=4/1)
reflux, 3 h
ca. 30% yield
In summary, we have demonstrated the rhodium-cata-
lyzed conjugate addition reaction of various arylboronic
acids into various fluorine-containing electron-deficient
olefins. As a result, the reaction of b-fluoroalkylated-a,b-
unsaturated ketones and amide with various arylboronic
acids led to a first example of the highly enantioselective
construction of an asymmetric tertiary carbon center
attached with a fluoroalkyl group. Further studies on the
rhodium-catalyzed conjugate addition reactions are now
under way in our laboratory.
Without RB(OH)2
O
CF
O
3
(S)-BINAP (6 mol %)
F C
Ph
Ph
)-2a
Toluene/H2O (v/v=4/1)
reflux, 3 h
3
(
Z
(E)-2a
ca. 3% yield
Without RB(OH)2
(S)-BINAP (6 mol %)
[Rh(C8H12)2]BF4 (5 mol %)
Toluene/H2O (v/v=4/1)
reflux, 3 h
quant.
Acknowledgement
Scheme 2. The reaction of Z-isomer in the absence of arylboronic acid.
We greatly acknowledge TOSOH F-TECH, INC. for
supplying trifluoroacetaldehyde ethyl hemiacetal for the
preparation of 2a and ethyl 4,4,4-trifluorocrotonate.
CF OH
CF
O
3
3
LiAlH4 (2.0 equiv.)
THF, 0 ˚C, 1 h
Ph
Ph
Ph
Ph
References and notes
4a (84% ee)
5a
81% (d.r. = 1 : 1)
1. (a) Young, S. D.; Britcher, S. F.; Tran, L. O.; Linda, L. S.; Lumma, W.
C.; Lyle, T. A.; Hyff, J. R.; Anderson, P. S.; Olsen, D. B.; Carrol, S. S.;
Pettibone, Z. D.; Obrien, J. A.; Ball, R. G.; Balani, S. K.; Lin, J. H.;
Chen, I. W.; Schleif, W. A.; Sardana, V. V.; Long, W. J.; Brynes, V. W.;
Emini, E. A. Antimicrob. Agents Chemother. 1995, 39, 2602–2605; (b)
Pierce, M. E.; Parsons, R. L., Jr.; Radesca, L. A.; Lo, Y. S.; Silverman,
S.; Moore, J. R.; Islam, Q.; Choudhury, A.; Fortunak, J. M. D.;
Nguyen, D.; Luo, C.; Mogan, S. J.; Davis, W. P.; Confalone, P. N.;
Chen, C.; Tillyer, R. D.; Frey, L.; Tan, L.; Xu, F.; Zhao, D.;
Thompson, A. S.; Corley, E. G.; Grabowski, E. J. J.; Reamer, R.;
Reider, P. J. J. Org. Chem. 1998, 63, 8536–8543; (c) Sculptoreanu, A.;
Yoshimura, N.; de Grout, W. C. J. Pharmacol. Exp. Ther. 2004, 310,
159–168.
2. (a) Richardson, T. I.; Dodge, J. A.; Durst, G. L.; Pfeifer, L. A.; Shah,
J.; Wang, Y.; Durbin, J. D.; Krishnan, V.; Norman, B. H. Bioorg.
Med. Chem. Lett. 2007, 17, 4824–4828; (b) Peleg, S.; Petersen, K. S.;
Suh, B. C.; Dolan, P.; Agoston, E. S.; Kensler, T. W.; Posner, G. H. J.
Med. Chem. 2006, 49, 7513–7517; (c) Jeannot, F.; Gosselin, G.;
Standring, D.; Bryant, M.; Sommadossi, J.-P.; Loi, A. G.; Colla, P.
CF
3
CuSO4-SiO2 (2.0 equiv.)
Hexane, reflux, 2 h
Ph
Ph
R
6a
26%
24
21
[α]
= +47.4 (
= -36.4 (
c
c
, 0.6, CHCl )
3
, 2.7, CHCl )
D
lit. for (
S
)-isomer (55% ee) [α]
D
3
Scheme 3. Determination of the absolute configuration of 4a.
[Rh(I)]
+
CF
O
3
(S
)-BINAP
+
Ph
O
ArB(OH)
2
CF
O
3
F C
Ph
Ar
Ph
3
´
L.; Mathe, C. Bioorg. Med. Chem. 2002, 10, 3153–3161; (d) Pu, Y. M.;
P
P
Rh
H O
2
Torok, D. S.; Ziffer, H.; Pan, X.-Q.; Meshnick, S. R. J. Med. Chem.
1995, 38, 4120–4124.
Ar
3. (a) Yamazaki, T.; Ishikawa, N.; Iwatsubo, H.; Kitazume, T. J. Chem.
Soc., Chem. Commun. 1987, 1340–1342; (b) Yamazaki, T.; Haga, J.;
Kitazume, T. Chem. Lett. 1991, 2175–2178; (c) Shinohara, N.; Haga,
J.; Yamazaki, T.; Kitazume, T.; Nakamura, S. J. Org. Chem. 1995,
60, 4363–4374; (d) Konno, T.; Yamazaki, T.; Kitazume, T. Tetra-
hedron 1996, 52, 199–208.
4. (a) Shimada, T.; Yoshioka, M.; Konno, T.; Ishihara, T. Org. Lett.
2006, 8, 1129–1131; (b) Shimada, T.; Yoshioka, M.; Konno, T.;
Ishihara, T. Chem. Commun. 2006, 3628–3630.
5. (a) Konno, T.; Umetani, H.; Kitazume, T. J. Org. Chem. 1997, 62,
137–150; (b) Konno, T. J. Synth. Org. Chem. Jpn. 2005, 63, 26–39.
6. (a) Konno, T.; Daitoh, T.; Ishihara, T.; Yamanaka, H. Tetrahedron:
Asymmetry 2001, 12, 2743–2748; (b) Konno, T.; Ishihara, T.;
Yamanaka, H. Tetrahedron Lett. 2000, 41, 8472–8476; (c) Konno,
T.; Nakano, H.; Kitazume, T. J. Fluorine Chem. 1997, 86, 81–87; (d)
Konno, T.; Kitazume, T. Tetrahedron: Asymmetry 1997, 8, 223–230;
(e) Konno, T.; Kitazume, T. Chem. Commun. 1996, 2227–2228.
7. (a) Yamazaki, T.; Umetani, H.; Kitazume, T. Tetrahedron Lett. 1997,
38, 6705–6708; (b) Yamazaki, T.; Umetani, H.; Kitazume, T. Isr. J.
Chem. 1999, 39, 193–205; (c) Kimura, M.; Yamazaki, T.; Kitazume,
T.; Kubota, T. Org. Lett. 2004, 6, 4651–4654.
CF
3
F C
3
Rh
P
P
P
P
Rh
O
Ar
Ar
O
H
Ph
H
Ph
Int-B
Int-A
Scheme 4. The reaction mechanism.
face of the alkene may coordinate with arylrhodium spe-
cies, followed by the attack of the aryl group, affording
the corresponding rhodium enolate (Int-B). Finally, the
enolate may react with H2O to give the corresponding