A. Beganskiene et al. / Inorganica Chimica Acta 361 (2008) 1349–1356
1355
1EZ, UK; fax: (+44) 1223 336 033; or e-mail: deposit@
ccdc.cam.ac.uk.
Acknowledgements
Council for International Exchange of Scholars is
acknowledged for the Fulbright Visiting Scholar Grant
(A.B.). Acknowledgement is made to the Donors of the
American Chemical Society Petroleum Research fund, for
partial support of this research.
References
[1] P.A. Vigato, S. Tamburini, D.E. Fenton, Coord. Chem. Rev. 106
(1990) 25.
[2] D.E. Fenton, H. Okawa, Chem. Ber./Recueil 130 (1997) 433.
[3] R. Than, A.A. Feldman, B. Krebs, Coord. Chem. Rev. 182 (1999)
211.
[4] A.L. Gavrilova, B. Bosnich, Chem. Rev. 104 (2004) 349.
[5] P.A. Vigato, S. Tamburini, Coord. Chem. Rev. 248 (2004) 1717.
[6] M. Suzuki, H. Furutachi, H. Okawa, Coord. Chem. Rev. 200–202
(2000) 105.
[7] E.A. Lewis, W.B. Tolman, Chem. Rev. 104 (2004) 1047.
[8] L.M. Mirica, X. Ottenwaelder, T.D.P. Stack, Chem. Rev. 104 (2004)
1013.
Fig. 5. Orientation of molecules of 6 along Ni–Ni vectors.
[9] B. Kersting, Z. Anorg. Allg. Chem. 630 (2004) 765.
[10] A. Christensen, C. Mayer, F. Jensen, A.D. Bond, C.J. McKenzie,
Dalton. Trans. (2006) 108.
[11] J.R. Dilworth, Y. Zheng, D.V. Griffiths, J. Chem. Soc., Dalton Trans.
(1999) 1877.
[12] M.E.v.d. Boom, S.-Y. Liou, Y. Ben-David, L.J.W. Shimon, D.
Milstein, J. Am. Chem. Soc. 120 (1998) 6531.
[13] M.E.v.d. Boom, S.-Y. Liou, Y. Ben-David, A. Vigalok, D. Milstein,
Angew. Chem., Int. Ed. 36 (1997) 625.
10.01° and 9.67°, respectively), resulting in displacing the
nickel center from the plane of the central phenyl ring by
˚
˚
0.401 A. A similar displacement (0.478 A) is present in
one of the two previously reported structures of nickel
bis((o-diphenyplhosphino)thiophenolate) [40], whereas in
another structure[36] and in the structure of [Ni{2-
(Ph2P)-6-(Me3Si)(C6H3S)}2] [38] such displacement is much
smaller. The reasons behind these structural differences are
not clear.
[14] M.E. v. d. Boom, S.-Y. Liou, L.J.W. Shimon, Y. Ben-David, D.
Milstein, Inorg. Chim. Acta 357 (2004) 4015.
[15] A. Vigalok, B. Rybtchinski, Y. Gozin, T.S. Koblenz, Y. Ben-David,
H. Rozenberg, D. Milstein, J. Am. Chem. Soc. 125 (2003) 15692.
[16] A. Beganskiene, N. Kongprakaiwoot, R.L. Luck, E. Urnezius, Z.
Anorg. Allg. Chem. 632 (2006) 1879.
[17] A. Beganskiene, N.I. Nikishkin, R.L. Luck, E. Urnezius, Heteroatom
Chem. 17 (2006) 656.
[18] M. Micha-Screttas, C.G. Screttas, J. Org. Chem. 42 (1977) 1462.
[19] L. Horner, A.J. Lawson, G. Simons, Phosphorus Sulfur 12 (1982)
353.
[20] N. Kongprakaiwoot, M.S. Bultman, R.L. Luck, E. Urnezius, Inorg.
Chim. Acta 358 (2005) 3423.
[21] A.C.T. North, D.C. Phillips, F.S. Mathews, Acta Crystallogr., Sect.
A 24 (1968) 351.
[22] M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascar-
ano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, J. Appl.
Crystallogr. 38 (2005) 381.
[23] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
[24] G.M. Sheldrick, SHELXL97 Program for Crystal Structure Refinement,
University of Go¨ttingen, Germany, 1997.
The structural regularities observed for packing of 6 in
the crystalline lattice deserve special attention. Thus in
the solid state molecules of 6 arrange in rows, shown verti-
cally in Fig. 4a. The rows, in turn, pack together in the
interlocking ladder pattern (Fig. 4b). This alignment is
observed if a unit cell is arranged such that the vector
defined by the C to BC points of the unit cell is situated
in front of and is collinear with the vector from points A
to AB (i.e., lattice vector [1, 0, ꢀ1]). The channels and cav-
ities formed by such packing (Fig. 4b) are occupied by the
THF molecules (not shown). The molecules of 6 are also
aligned in the direction of the a-axis of the unit cell so that
infinite rows along the Niꢃ ꢃ ꢃNi vector are formed (Fig. 5).
Such an alignment is most likely an effect of the packing
˚
forces, as the intermolecular Ni–Ni distance of 9.806 A
excludes the possibility of metallophilic interactions.
`
[25] P. Meuller, Crystal Structure Refinement: A Crystallographers Guide
to SHELXL, Oxford University Press, Oxford, New York, 2006.
[26] J.R. Dilworth, N. Wheatley, Coord. Chem. Rev. 199 (2000) 89.
[27] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochman, Advanced
Inorganic Chemistry, John Wiley & Sons, New York, 1999.
[28] S. Brooker, Coord. Chem. Rev. 222 (2001) 33.
[29] E. Block, V. Eswarakrishnan, M. Gernon, G. Ofori-Okai, C. Saha, K.
Tang, J. Zubieta, J. Am. Chem. Soc. 111 (1989) 658.
[30] E. Block, G. Ofori-Okai, J. Zubieta, J. Am. Chem. Soc. 111 (1989)
2327.
4. Supplementary material
CCDC 652959, 652960 and 652961 contain the supple-
mentary crystallographic data for 4a, 5 and 6. These data
lographic Data Centre, 12 Union Road, Cambridge CB2