ORGANIC
LETTERS
2008
Vol. 10, No. 8
1585-1588
Escherichia coli Glucuronylsynthase:
An Engineered Enzyme for the
Synthesis of
â-Glucuronides
|
Shane M. Wilkinson,† Chu W. Liew,‡ Joel P. Mackay,‡ Hamzah M. Salleh,§,
Stephen G. Withers,§ and Malcolm D. McLeod*,†
School of Chemistry, UniVersity of Sydney, NSW 2006, Australia, School of Molecular
and Microbial Biosciences, UniVersity of Sydney, NSW 2006, Australia, and
Department of Chemistry, UniVersity of British Columbia, VancouVer,
BC V6T 1Z1, Canada
Received February 6, 2008
ABSTRACT
The glycosynthase derived from E. coli â-glucuronidase catalyzes the glucuronylation of a range of primary, secondary, and aryl alcohols with
moderate to excellent yields. The procedure provides an efficient, stereoselective, and scalable single-step synthesis of
â-glucuronides under
mild conditions.
The formation of glucuronide conjugates during phase II
metabolism is a major pathway for the elimination of xeno-
biotic and some endobiotic compounds from the body.1 The
identification, quantification, and pharmacological evaluation
of these metabolites is essential in many fields including
sports drug testing,2 the detection of agricultural residues,3
and drug development,1 leading to a significant demand for
glucuronide standards.
The preparation of glucuronides presents significant chal-
lenges for existing methods of glucuronylation.4 Chemical
methods5 of glucuronylation are based on the Koenigs-
Knorr reaction or related procedures but often suffer from
poor yields and side reactions due to the low reactivity of
glucuronic acid derived glycosyl donors4,5 and require one
or more deprotection steps to liberate free glucuronide.
Enzymatic methods6 of synthesis employ uridine 5′-diphos-
phoglucuronosyl transferases (UGTs): a superfamily of
† School of Chemistry, University of Sydney. Current address: Research
School of Chemistry, Australian National University, Canberra, ACT 0200,
Australia.
(4) (a) Kaspersen, F. M.; Van Boeckel, C. A. A. Xenobiotica 1987, 17,
1451. (b) Stachulski, A. V.; Jenkins, G. N. Nat. Prod. Rep. 1998, 15, 173.
(c) Stachulski, A. V.; Harding, J. R.; Lindon, J. C.; Maggs, J. L.; Park, B.
K.; Wilson, I. D. J. Med. Chem. 2006, 49, 6931.
(5) For recent chemical synthesis, see: (a) Engstrom, K. M.; Daanen, J.
F.; Wagaw, S.; Stewart, A. O. J. Org. Chem. 2006, 71, 8378. (b) Harding,
J. R.; King, C. D.; Perrie, J. A.; Sinnott, D.; Stachulski, A. V. Org. Biomol.
Chem. 2005, 3, 1501. (c) Pola´kova´, M.; Pitt, N.; Tosin, M.; Murphy, P. V.
Angew. Chem., Int. Ed. 2004, 43, 2518.
‡ School of Molecular and Microbial Biosciences, University of Sydney.
§ University of British Columbia.
| Current address: Department of Biotechnology Engineering, Interna-
tional Islamic University Malaysia, Kuala Lumpur, 53100, Malaysia.
(1) (a) Shipkova, M.; Wieland, E. Clin. Chim. Acta 2005, 358, 2. (b)
Wells, P. G.; Mackenzie, P. I.; Chowdhury, J. R.; Guillemette, C.; Gregory,
P. A.; Ishii, Y.; Hansen, A. J.; Kessler, F. K.; Kim, P. M.; Chowdhury, N.
R.; Ritter, J. K. Drug Metab. Dispos. 2004, 32, 281.
(2) Scha¨nzer, W.; Donike, M. Anal. Chim. Acta 1993, 275, 23.
(3) (a) Kim, H.-J.; Ahn, K. C.; Ma, S. J.; Gee, S. J.; Hammock, B. D. J.
Agric. Food Chem. 2007, 55, 3750. (b) Hebestreit, M.; Flenker, U.; Buisson,
C.; Andre, F.; Le Bizec, B.; Fry, H.; Lang, M.; Weigert, A. P.; Heinrich,
K.; Hird, S.; Schanzer, W. J. Agric. Food Chem. 2006, 54, 2850.
(6) For recent enzymic synthesis, see: (a) Ja¨ntti, S. E.; Kiriazis, A.;
Reinila¨, R. R.; Kostiainen, R. K.; Ketola, R. A. Steroids 2007, 72, 287. (b)
Khymenets, O.; Joglar, J.; Clape´s, P.; Parella, T.; Covas, M.-I.; de la Torre,
R. AdV. Synth. Catal. 2006, 348, 2155. (c) Kuuranne, T.; Aitio, O.; Vahermo,
M.; Elovaara, E.; Kostiainen, R. Bioconjugate Chem. 2002, 13, 194.
10.1021/ol8002767 CCC: $40.75
© 2008 American Chemical Society
Published on Web 03/18/2008